File size: 4,152 Bytes
7f8cb6d
 
86d71e1
7f8cb6d
6cc56c2
 
 
 
 
 
 
a8c9cb0
21c55ca
 
 
 
7f8cb6d
 
 
 
 
 
e45c4d4
6d25e94
7f8cb6d
47a0256
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cc56c2
 
 
 
 
 
 
 
 
 
 
7f8cb6d
 
 
 
 
6cc56c2
7f8cb6d
b98b6d3
6cc56c2
 
a0e5730
 
 
7f8cb6d
6cc56c2
 
7f8cb6d
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import gradio as gr
from transformers import pipeline
from transformers import M2M100Tokenizer, M2M100ForConditionalGeneration

pretrained_model: str = "facebook/m2m100_1.2B"
cache_dir: str = "models/"

tokenizer = M2M100Tokenizer.from_pretrained(pretrained_model, cache_dir=cache_dir)
translation_model = M2M100ForConditionalGeneration.from_pretrained(
        pretrained_model, cache_dir=cache_dir)

transcription = pipeline("automatic-speech-recognition", model= "openai/whisper-base")
clasification = pipeline(
    "audio-classification",
    model="anton-l/xtreme_s_xlsr_300m_minds14",
)

def audio_a_text(audio):
  text = transcription(audio)["text"]
  return text

def text_to_sentimient(audio):
    #text = transcription(audio)["text"]
    return clasification(audio)

lang_id = {
    "Afrikaans": "af",
    "Amharic": "am",
    "Arabic": "ar",
    "Asturian": "ast",
    "Azerbaijani": "az",
    "Bashkir": "ba",
    "Belarusian": "be",
    "Bulgarian": "bg",
    "Bengali": "bn",
    "Breton": "br",
    "Bosnian": "bs",
    "Catalan": "ca",
    "Cebuano": "ceb",
    "Czech": "cs",
    "Welsh": "cy",
    "Danish": "da",
    "German": "de",
    "Greeek": "el",
    "English": "en",
    "Spanish": "es",
    "Estonian": "et",
    "Persian": "fa",
    "Fulah": "ff",
    "Finnish": "fi",
    "French": "fr",
    "Western Frisian": "fy",
    "Irish": "ga",
    "Gaelic": "gd",
    "Galician": "gl",
    "Gujarati": "gu",
    "Hausa": "ha",
    "Hebrew": "he",
    "Hindi": "hi",
    "Croatian": "hr",
    "Haitian": "ht",
    "Hungarian": "hu",
    "Armenian": "hy",
    "Indonesian": "id",
    "Igbo": "ig",
    "Iloko": "ilo",
    "Icelandic": "is",
    "Italian": "it",
    "Japanese": "ja",
    "Javanese": "jv",
    "Georgian": "ka",
    "Kazakh": "kk",
    "Central Khmer": "km",
    "Kannada": "kn",
    "Korean": "ko",
    "Luxembourgish": "lb",
    "Ganda": "lg",
    "Lingala": "ln",
    "Lao": "lo",
    "Lithuanian": "lt",
    "Latvian": "lv",
    "Malagasy": "mg",
    "Macedonian": "mk",
    "Malayalam": "ml",
    "Mongolian": "mn",
    "Marathi": "mr",
    "Malay": "ms",
    "Burmese": "my",
    "Nepali": "ne",
    "Dutch": "nl",
    "Norwegian": "no",
    "Northern Sotho": "ns",
    "Occitan": "oc",
    "Oriya": "or",
    "Panjabi": "pa",
    "Polish": "pl",
    "Pushto": "ps",
    "Portuguese": "pt",
    "Romanian": "ro",
    "Russian": "ru",
    "Sindhi": "sd",
    "Sinhala": "si",
    "Slovak": "sk",
    "Slovenian": "sl",
    "Somali": "so",
    "Albanian": "sq",
    "Serbian": "sr",
    "Swati": "ss",
    "Sundanese": "su",
    "Swedish": "sv",
    "Swahili": "sw",
    "Tamil": "ta",
    "Thai": "th",
    "Tagalog": "tl",
    "Tswana": "tn",
    "Turkish": "tr",
    "Ukrainian": "uk",
    "Urdu": "ur",
    "Uzbek": "uz",
    "Vietnamese": "vi",
    "Wolof": "wo",
    "Xhosa": "xh",
    "Yiddish": "yi",
    "Yoruba": "yo",
    "Chinese": "zh",
    "Zulu": "zu",
}
def translation(source_lang, target_lang):
    src_lang = lang_id[source_lang]
    trg_lang = lang_id[target_lang]
    tokenizer.src_lang = src_lang
    with torch.no_grad():
        encoded_input = tokenizer(user_input, return_tensors="pt").to(device)
        generated_tokens = model.generate(
        **encoded_input, forced_bos_token_id=tokenizer.get_lang_id(trg_lang))
        translated_text = tokenizer.batch_decode(
        generated_tokens, skip_special_tokens=True)[0]
    return translated_text
demo = gr.Blocks()

with demo:
  gr.Markdown("Speech analyzer")
  audio = gr.Audio(type="filepath", label = "Upload a file")
  text0 = gr.Textbox()
  text = gr.Textbox()
  source_lang = gr.Dropdown(label="Source lang", choices=list(lang_id.keys()))
  target_lang = gr.Dropdown(label="target lang", choices=list(lang_id.keys()))
   
  #gr.Examples(examples = list(lang_id.keys()),
   #             inputs=[
    #                source_lang])
  b1 = gr.Button("convert to text")
  b3 = gr.Button("translate")
  b3.Dropdown(translation, input = text0, output = text)
  b1.click(audio_a_text, inputs=audio, outputs=text)

  b2 = gr.Button("Classification of speech")
  b2.click(text_to_sentimient, inputs=audio, outputs=text)

demo.launch()