Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -28,7 +28,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
28 |
print(f"Bruker enhet: {device}")
|
29 |
|
30 |
@spaces.GPU(duration=60 * 2)
|
31 |
-
def pipe(file, return_timestamps=False):
|
32 |
asr = pipeline(
|
33 |
task="automatic-speech-recognition",
|
34 |
model=MODEL_NAME,
|
@@ -52,7 +52,8 @@ def format_output(text):
|
|
52 |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text)
|
53 |
return text
|
54 |
|
55 |
-
def transcribe(file, return_timestamps=False):
|
|
|
56 |
waveform, sample_rate = torchaudio.load(file)
|
57 |
audio_duration = waveform.size(1) / sample_rate
|
58 |
|
@@ -66,19 +67,34 @@ def transcribe(file, return_timestamps=False):
|
|
66 |
else:
|
67 |
file_to_transcribe = file
|
68 |
truncated = False
|
|
|
69 |
|
70 |
-
if
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
else:
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
|
83 |
if truncated:
|
84 |
link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
@@ -144,13 +160,14 @@ with demo:
|
|
144 |
inputs=[
|
145 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
146 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
|
|
147 |
],
|
148 |
outputs=gr.HTML(label="text"),
|
149 |
#outputs="text",
|
150 |
|
151 |
description=(
|
152 |
-
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
|
153 |
-
f" modellen
|
154 |
),
|
155 |
allow_flagging="never",
|
156 |
#show_submit_button=False,
|
|
|
28 |
print(f"Bruker enhet: {device}")
|
29 |
|
30 |
@spaces.GPU(duration=60 * 2)
|
31 |
+
def pipe(file, return_timestamps=False,lang="no"):
|
32 |
asr = pipeline(
|
33 |
task="automatic-speech-recognition",
|
34 |
model=MODEL_NAME,
|
|
|
52 |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text)
|
53 |
return text
|
54 |
|
55 |
+
def transcribe(file, return_timestamps=False,lang="no"):
|
56 |
+
|
57 |
waveform, sample_rate = torchaudio.load(file)
|
58 |
audio_duration = waveform.size(1) / sample_rate
|
59 |
|
|
|
67 |
else:
|
68 |
file_to_transcribe = file
|
69 |
truncated = False
|
70 |
+
|
71 |
|
72 |
+
if lang="no":
|
73 |
+
if not return_timestamps:
|
74 |
+
text = pipe(file_to_transcribe)["text"]
|
75 |
+
formatted_text = format_output(text)
|
76 |
+
else:
|
77 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True)["chunks"]
|
78 |
+
text = []
|
79 |
+
for chunk in chunks:
|
80 |
+
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
81 |
+
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
|
82 |
+
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
83 |
+
text.append(line)
|
84 |
+
formatted_text = "<br>".join(text)
|
85 |
else:
|
86 |
+
if not return_timestamps:
|
87 |
+
text = pipe(file_to_transcribe, return_timestams=False,lang="nn")["text"]
|
88 |
+
formatted_text = format_output(text)
|
89 |
+
else:
|
90 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True,lang="nn")["chunks"]
|
91 |
+
text = []
|
92 |
+
for chunk in chunks:
|
93 |
+
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
94 |
+
end_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][1])) if chunk["timestamp"][1] is not None else "??:??:??"
|
95 |
+
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
96 |
+
text.append(line)
|
97 |
+
formatted_text = "<br>".join(text)
|
98 |
|
99 |
if truncated:
|
100 |
link="https://github.com/NbAiLab/nostram/blob/main/leverandorer.md"
|
|
|
160 |
inputs=[
|
161 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
162 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
163 |
+
gr.components.Checkbox(label="Nynorsk"),
|
164 |
],
|
165 |
outputs=gr.HTML(label="text"),
|
166 |
#outputs="text",
|
167 |
|
168 |
description=(
|
169 |
+
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! <br> Demoen bruker den fintunede"
|
170 |
+
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter."
|
171 |
),
|
172 |
allow_flagging="never",
|
173 |
#show_submit_button=False,
|