Spaces:
Running
on
T4
Running
on
T4
update test
Browse files
app.py
CHANGED
|
@@ -4,7 +4,6 @@ import os
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
import gradio as gr
|
| 7 |
-
import pytube as pt
|
| 8 |
import spaces
|
| 9 |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
|
| 10 |
from huggingface_hub import model_info
|
|
@@ -14,6 +13,7 @@ try:
|
|
| 14 |
except ImportError:
|
| 15 |
FLASH_ATTENTION = False
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 19 |
lang = "no"
|
|
@@ -25,16 +25,9 @@ print(f"Using device: {device}")
|
|
| 25 |
|
| 26 |
@spaces.GPU(duration=60 * 2)
|
| 27 |
def pipe(file, return_timestamps=False):
|
| 28 |
-
# model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
| 29 |
-
# model.to(device)
|
| 30 |
-
# processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
| 31 |
-
# model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True)
|
| 32 |
-
# model.generation_config.cache_implementation = "static"
|
| 33 |
asr = pipeline(
|
| 34 |
task="automatic-speech-recognition",
|
| 35 |
model=MODEL_NAME,
|
| 36 |
-
# tokenizer=AutoTokenizer.from_pretrained(MODEL_NAME),
|
| 37 |
-
# feature_extractor=AutoFeatureExtractor.from_pretrained(MODEL_NAME),
|
| 38 |
chunk_length_s=30,
|
| 39 |
device=device,
|
| 40 |
token=auth_token,
|
|
@@ -46,7 +39,6 @@ def pipe(file, return_timestamps=False):
|
|
| 46 |
task="transcribe",
|
| 47 |
no_timestamps=not return_timestamps,
|
| 48 |
)
|
| 49 |
-
# asr.model.config.no_timestamps_token_id = asr.tokenizer.encode("<|notimestamps|>", add_special_tokens=False)[0]
|
| 50 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
| 51 |
|
| 52 |
def transcribe(file, return_timestamps=False):
|
|
@@ -63,7 +55,6 @@ def transcribe(file, return_timestamps=False):
|
|
| 63 |
text = "\n".join(text)
|
| 64 |
return text
|
| 65 |
|
| 66 |
-
|
| 67 |
def _return_yt_html_embed(yt_url):
|
| 68 |
video_id = yt_url.split("?v=")[-1]
|
| 69 |
HTML_str = (
|
|
@@ -72,18 +63,26 @@ def _return_yt_html_embed(yt_url):
|
|
| 72 |
)
|
| 73 |
return HTML_str
|
| 74 |
|
| 75 |
-
|
| 76 |
def yt_transcribe(yt_url, return_timestamps=False):
|
| 77 |
-
yt = pt.YouTube(yt_url)
|
| 78 |
html_embed_str = _return_yt_html_embed(yt_url)
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
|
| 83 |
|
| 84 |
return html_embed_str, text
|
| 85 |
|
| 86 |
-
|
| 87 |
demo = gr.Blocks()
|
| 88 |
|
| 89 |
mf_transcribe = gr.Interface(
|
|
@@ -102,7 +101,7 @@ mf_transcribe = gr.Interface(
|
|
| 102 |
allow_flagging="never",
|
| 103 |
)
|
| 104 |
|
| 105 |
-
|
| 106 |
fn=yt_transcribe,
|
| 107 |
inputs=[
|
| 108 |
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
|
@@ -120,12 +119,9 @@ yt_transcribe = gr.Interface(
|
|
| 120 |
)
|
| 121 |
|
| 122 |
with demo:
|
| 123 |
-
gr.TabbedInterface(
|
| 124 |
-
mf_transcribe,
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
])
|
| 130 |
-
|
| 131 |
-
demo.launch(share=share).queue()
|
|
|
|
| 4 |
import torch
|
| 5 |
|
| 6 |
import gradio as gr
|
|
|
|
| 7 |
import spaces
|
| 8 |
from transformers import AutoFeatureExtractor, AutoTokenizer, WhisperForConditionalGeneration, WhisperProcessor, pipeline
|
| 9 |
from huggingface_hub import model_info
|
|
|
|
| 13 |
except ImportError:
|
| 14 |
FLASH_ATTENTION = False
|
| 15 |
|
| 16 |
+
import yt_dlp # Added import for yt-dlp
|
| 17 |
|
| 18 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 19 |
lang = "no"
|
|
|
|
| 25 |
|
| 26 |
@spaces.GPU(duration=60 * 2)
|
| 27 |
def pipe(file, return_timestamps=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
asr = pipeline(
|
| 29 |
task="automatic-speech-recognition",
|
| 30 |
model=MODEL_NAME,
|
|
|
|
|
|
|
| 31 |
chunk_length_s=30,
|
| 32 |
device=device,
|
| 33 |
token=auth_token,
|
|
|
|
| 39 |
task="transcribe",
|
| 40 |
no_timestamps=not return_timestamps,
|
| 41 |
)
|
|
|
|
| 42 |
return asr(file, return_timestamps=return_timestamps, batch_size=24)
|
| 43 |
|
| 44 |
def transcribe(file, return_timestamps=False):
|
|
|
|
| 55 |
text = "\n".join(text)
|
| 56 |
return text
|
| 57 |
|
|
|
|
| 58 |
def _return_yt_html_embed(yt_url):
|
| 59 |
video_id = yt_url.split("?v=")[-1]
|
| 60 |
HTML_str = (
|
|
|
|
| 63 |
)
|
| 64 |
return HTML_str
|
| 65 |
|
|
|
|
| 66 |
def yt_transcribe(yt_url, return_timestamps=False):
|
|
|
|
| 67 |
html_embed_str = _return_yt_html_embed(yt_url)
|
| 68 |
+
|
| 69 |
+
ydl_opts = {
|
| 70 |
+
'format': 'bestaudio/best',
|
| 71 |
+
'outtmpl': 'audio.%(ext)s',
|
| 72 |
+
'postprocessors': [{
|
| 73 |
+
'key': 'FFmpegExtractAudio',
|
| 74 |
+
'preferredcodec': 'mp3',
|
| 75 |
+
'preferredquality': '192',
|
| 76 |
+
}],
|
| 77 |
+
'quiet': True,
|
| 78 |
+
}
|
| 79 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 80 |
+
ydl.download([yt_url])
|
| 81 |
|
| 82 |
text = transcribe("audio.mp3", return_timestamps=return_timestamps)
|
| 83 |
|
| 84 |
return html_embed_str, text
|
| 85 |
|
|
|
|
| 86 |
demo = gr.Blocks()
|
| 87 |
|
| 88 |
mf_transcribe = gr.Interface(
|
|
|
|
| 101 |
allow_flagging="never",
|
| 102 |
)
|
| 103 |
|
| 104 |
+
yt_transcribe_interface = gr.Interface(
|
| 105 |
fn=yt_transcribe,
|
| 106 |
inputs=[
|
| 107 |
gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
|
|
|
| 119 |
)
|
| 120 |
|
| 121 |
with demo:
|
| 122 |
+
gr.TabbedInterface(
|
| 123 |
+
[mf_transcribe, yt_transcribe_interface],
|
| 124 |
+
["Transcribe Audio", "Transcribe YouTube"]
|
| 125 |
+
)
|
| 126 |
+
|
| 127 |
+
demo.launch(share=share).queue()
|
|
|
|
|
|
|
|
|