Spaces:
Running
on
T4
Running
on
T4
Update app.py
Browse files
app.py
CHANGED
@@ -19,6 +19,8 @@ import yt_dlp # Added import for yt-dlp
|
|
19 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
20 |
lang = "no"
|
21 |
|
|
|
|
|
22 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
23 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
24 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
@@ -62,7 +64,7 @@ def transcribe(file, return_timestamps=False):
|
|
62 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
63 |
text.append(line)
|
64 |
formatted_text = "\n".join(text)
|
65 |
-
formatted_text += "
|
66 |
return formatted_text
|
67 |
|
68 |
def _return_yt_html_embed(yt_url):
|
@@ -98,14 +100,14 @@ def yt_transcribe(yt_url, return_timestamps=False):
|
|
98 |
demo = gr.Blocks()
|
99 |
|
100 |
with demo:
|
101 |
-
gr.
|
102 |
mf_transcribe = gr.Interface(
|
103 |
fn=transcribe,
|
104 |
inputs=[
|
105 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
106 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
107 |
],
|
108 |
-
outputs="text",
|
109 |
title="NB-Whisper",
|
110 |
description=(
|
111 |
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
|
|
|
19 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
20 |
lang = "no"
|
21 |
|
22 |
+
logo_path = os.path.join(os.path.dirname(__file__), "Logo.png")
|
23 |
+
|
24 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
25 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
26 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
64 |
line = f"[{start_time} -> {end_time}] {chunk['text']}"
|
65 |
text.append(line)
|
66 |
formatted_text = "\n".join(text)
|
67 |
+
formatted_text += "<br><br><i>Transkribert med NB-Whisper demo</i>"
|
68 |
return formatted_text
|
69 |
|
70 |
def _return_yt_html_embed(yt_url):
|
|
|
100 |
demo = gr.Blocks()
|
101 |
|
102 |
with demo:
|
103 |
+
gr.Image(value=logo_path, type="filepath", elem_id="logo", label=None).style(width=100) # Adjust width as needed
|
104 |
mf_transcribe = gr.Interface(
|
105 |
fn=transcribe,
|
106 |
inputs=[
|
107 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
108 |
gr.components.Checkbox(label="Inkluder tidsstempler"),
|
109 |
],
|
110 |
+
outputs=gr.HTML(label="text"),
|
111 |
title="NB-Whisper",
|
112 |
description=(
|
113 |
"Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk! Demoen bruker den fintunede"
|