Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -18,7 +18,9 @@ except ImportError:
|
|
| 18 |
import yt_dlp # Added import for yt-dlp
|
| 19 |
|
| 20 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 24 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
|
@@ -26,7 +28,7 @@ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
| 26 |
print(f"Bruker enhet: {device}")
|
| 27 |
|
| 28 |
@spaces.GPU(duration=60 * 2)
|
| 29 |
-
def pipe(file, return_timestamps=False,
|
| 30 |
asr = pipeline(
|
| 31 |
task="automatic-speech-recognition",
|
| 32 |
model=MODEL_NAME,
|
|
@@ -44,20 +46,24 @@ def pipe(file, return_timestamps=False, lang="no"):
|
|
| 44 |
return asr(file, return_timestamps=return_timestamps, batch_size=24, generate_kwargs={'task': 'transcribe', 'language': lang})
|
| 45 |
|
| 46 |
def format_output(text):
|
|
|
|
|
|
|
|
|
|
| 47 |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text)
|
| 48 |
return text
|
| 49 |
|
| 50 |
-
def transcribe(file, return_timestamps=False,
|
| 51 |
|
| 52 |
waveform, sample_rate = torchaudio.load(file)
|
| 53 |
audio_duration = waveform.size(1) / sample_rate
|
| 54 |
-
warning_message
|
| 55 |
|
| 56 |
if audio_duration > max_audio_length:
|
| 57 |
warning_message = (
|
| 58 |
"<b style='color:red;'>⚠️ Advarsel:</b> "
|
| 59 |
"Lydfilen er lengre enn 30 minutter. Kun de første 30 minuttene vil bli transkribert."
|
| 60 |
)
|
|
|
|
| 61 |
waveform = waveform[:, :int(max_audio_length * sample_rate)]
|
| 62 |
truncated_file = "truncated_audio.wav"
|
| 63 |
torchaudio.save(truncated_file, waveform, sample_rate)
|
|
@@ -67,6 +73,7 @@ def transcribe(file, return_timestamps=False, lang_nn=False):
|
|
| 67 |
file_to_transcribe = file
|
| 68 |
truncated = False
|
| 69 |
|
|
|
|
| 70 |
if not lang_nn:
|
| 71 |
if not return_timestamps:
|
| 72 |
text = pipe(file_to_transcribe)["text"]
|
|
@@ -82,10 +89,10 @@ def transcribe(file, return_timestamps=False, lang_nn=False):
|
|
| 82 |
formatted_text = "<br>".join(text)
|
| 83 |
else:
|
| 84 |
if not return_timestamps:
|
| 85 |
-
text = pipe(file_to_transcribe,
|
| 86 |
formatted_text = format_output(text)
|
| 87 |
else:
|
| 88 |
-
chunks = pipe(file_to_transcribe, return_timestamps=True,
|
| 89 |
text = []
|
| 90 |
for chunk in chunks:
|
| 91 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
@@ -146,47 +153,57 @@ def yt_transcribe(yt_url, return_timestamps=False):
|
|
| 146 |
demo = gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.red))
|
| 147 |
|
| 148 |
with demo:
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
gr.Markdown(
|
| 155 |
"""
|
| 156 |
-
<h1 style="font-size: 3em;
|
| 157 |
-
"""
|
| 158 |
)
|
| 159 |
|
| 160 |
-
# Description moved to the bottom
|
| 161 |
-
with gr.Row():
|
| 162 |
-
gr.Markdown(
|
| 163 |
-
"""
|
| 164 |
-
Transkriber lange lydopptak fra mikrofon eller lydfiler med et enkelt klikk!
|
| 165 |
-
Demoen bruker den fintunede modellen NbAiLab/nb-whisper-large og 🤗 Transformers til å transkribere lydfiler opp til 30 minutter.
|
| 166 |
-
"""
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
mf_transcribe = gr.Interface(
|
| 170 |
fn=transcribe,
|
| 171 |
inputs=[
|
| 172 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
| 173 |
-
gr.components.Checkbox(label="Inkluder tidskoder"),
|
| 174 |
gr.components.Checkbox(label="Nynorsk"),
|
| 175 |
],
|
| 176 |
|
| 177 |
outputs=[
|
| 178 |
gr.HTML(label="Varsel"),
|
| 179 |
gr.HTML(label="text"),
|
| 180 |
-
gr.File(label="Last ned transkripsjon")
|
| 181 |
],
|
|
|
|
|
|
|
| 182 |
description=(
|
| 183 |
-
"
|
| 184 |
-
"
|
| 185 |
),
|
| 186 |
allow_flagging="never",
|
|
|
|
| 187 |
)
|
| 188 |
|
| 189 |
-
#
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
import yt_dlp # Added import for yt-dlp
|
| 19 |
|
| 20 |
MODEL_NAME = "NbAiLab/nb-whisper-large"
|
| 21 |
+
#lang = "no"
|
| 22 |
+
|
| 23 |
+
max_audio_length= 30 * 60
|
| 24 |
|
| 25 |
share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
|
| 26 |
auth_token = os.environ.get("AUTH_TOKEN") or True
|
|
|
|
| 28 |
print(f"Bruker enhet: {device}")
|
| 29 |
|
| 30 |
@spaces.GPU(duration=60 * 2)
|
| 31 |
+
def pipe(file, return_timestamps=False,lang="no"):
|
| 32 |
asr = pipeline(
|
| 33 |
task="automatic-speech-recognition",
|
| 34 |
model=MODEL_NAME,
|
|
|
|
| 46 |
return asr(file, return_timestamps=return_timestamps, batch_size=24, generate_kwargs={'task': 'transcribe', 'language': lang})
|
| 47 |
|
| 48 |
def format_output(text):
|
| 49 |
+
# Add a line break after ".", "!", ":", or "?" unless part of sequences like "..."
|
| 50 |
+
#text = re.sub(r'(?<!\.)[.!:?](?!\.)', lambda m: m.group() + '<br>', text)
|
| 51 |
+
# Ensure line break after sequences like "..." or other punctuation patterns
|
| 52 |
text = re.sub(r'(\.{3,}|[.!:?])', lambda m: m.group() + '<br>', text)
|
| 53 |
return text
|
| 54 |
|
| 55 |
+
def transcribe(file, return_timestamps=False,lang_nn=False):
|
| 56 |
|
| 57 |
waveform, sample_rate = torchaudio.load(file)
|
| 58 |
audio_duration = waveform.size(1) / sample_rate
|
| 59 |
+
warning_message=None
|
| 60 |
|
| 61 |
if audio_duration > max_audio_length:
|
| 62 |
warning_message = (
|
| 63 |
"<b style='color:red;'>⚠️ Advarsel:</b> "
|
| 64 |
"Lydfilen er lengre enn 30 minutter. Kun de første 30 minuttene vil bli transkribert."
|
| 65 |
)
|
| 66 |
+
# Trim the waveform to the first 30 minutes
|
| 67 |
waveform = waveform[:, :int(max_audio_length * sample_rate)]
|
| 68 |
truncated_file = "truncated_audio.wav"
|
| 69 |
torchaudio.save(truncated_file, waveform, sample_rate)
|
|
|
|
| 73 |
file_to_transcribe = file
|
| 74 |
truncated = False
|
| 75 |
|
| 76 |
+
|
| 77 |
if not lang_nn:
|
| 78 |
if not return_timestamps:
|
| 79 |
text = pipe(file_to_transcribe)["text"]
|
|
|
|
| 89 |
formatted_text = "<br>".join(text)
|
| 90 |
else:
|
| 91 |
if not return_timestamps:
|
| 92 |
+
text = pipe(file_to_transcribe,lang="nn")["text"]
|
| 93 |
formatted_text = format_output(text)
|
| 94 |
else:
|
| 95 |
+
chunks = pipe(file_to_transcribe, return_timestamps=True,lang="nn")["chunks"]
|
| 96 |
text = []
|
| 97 |
for chunk in chunks:
|
| 98 |
start_time = time.strftime('%H:%M:%S', time.gmtime(chunk["timestamp"][0])) if chunk["timestamp"][0] is not None else "??:??:??"
|
|
|
|
| 153 |
demo = gr.Blocks(theme=gr.themes.Default(primary_hue=gr.themes.colors.red, secondary_hue=gr.themes.colors.red))
|
| 154 |
|
| 155 |
with demo:
|
| 156 |
+
|
| 157 |
+
with gr.Column():
|
| 158 |
+
gr.HTML(f"<img src='file/Logonew.png' style='width:200px;'>")
|
| 159 |
+
with gr.Column(scale=8):
|
| 160 |
+
# Use Markdown for title and description
|
| 161 |
gr.Markdown(
|
| 162 |
"""
|
| 163 |
+
<h1 style="font-size: 3em;">NB-Whisper Demo</h1>
|
| 164 |
+
"""
|
| 165 |
)
|
| 166 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
mf_transcribe = gr.Interface(
|
| 168 |
fn=transcribe,
|
| 169 |
inputs=[
|
| 170 |
gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
|
| 171 |
+
gr.components.Checkbox(label="Inkluder tidskoder"),
|
| 172 |
gr.components.Checkbox(label="Nynorsk"),
|
| 173 |
],
|
| 174 |
|
| 175 |
outputs=[
|
| 176 |
gr.HTML(label="Varsel"),
|
| 177 |
gr.HTML(label="text"),
|
| 178 |
+
gr.File(label="Last ned transkripsjon")
|
| 179 |
],
|
| 180 |
+
#outputs="text",
|
| 181 |
+
|
| 182 |
description=(
|
| 183 |
+
"Demoen bruker"
|
| 184 |
+
f" modellen [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) til å transkribere lydfiler opp til 30 minutter."
|
| 185 |
),
|
| 186 |
allow_flagging="never",
|
| 187 |
+
#show_submit_button=False,
|
| 188 |
)
|
| 189 |
|
| 190 |
+
# Uncomment to add the YouTube transcription interface if needed
|
| 191 |
+
# yt_transcribe_interface = gr.Interface(
|
| 192 |
+
# fn=yt_transcribe,
|
| 193 |
+
# inputs=[
|
| 194 |
+
# gr.components.Textbox(lines=1, placeholder="Lim inn URL til en YouTube-video her", label="YouTube URL"),
|
| 195 |
+
# gr.components.Checkbox(label="Inkluder tidsstempler"),
|
| 196 |
+
# ],
|
| 197 |
+
# examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
|
| 198 |
+
# outputs=["html", "text"],
|
| 199 |
+
# title="Whisper Demo: Transkriber YouTube",
|
| 200 |
+
# description=(
|
| 201 |
+
# "Transkriber lange YouTube-videoer med et enkelt klikk! Demoen bruker den fintunede modellen:"
|
| 202 |
+
# f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) og 🤗 Transformers til å transkribere lydfiler av"
|
| 203 |
+
# " vilkårlig lengde."
|
| 204 |
+
# ),
|
| 205 |
+
# allow_flagging="never",
|
| 206 |
+
# )
|
| 207 |
+
|
| 208 |
+
# Start demoen uten faner
|
| 209 |
+
demo.launch(share=share, show_api=False,allowed_paths=["Logonew.png"]).queue()
|