File size: 3,671 Bytes
07ebfb1
 
 
 
 
 
5b11f8b
07ebfb1
 
 
 
 
 
 
 
6351056
ad6cbd0
07ebfb1
5b11f8b
f721cff
983c638
 
 
 
 
 
 
 
 
07ebfb1
f721cff
 
 
 
 
07ebfb1
f721cff
 
07ebfb1
f721cff
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5e579f
 
 
 
 
 
 
 
 
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c101e3
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
459ad15
07ebfb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459ad15
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os

import torch

import gradio as gr
import pytube as pt
import spaces
from transformers import pipeline
from huggingface_hub import model_info

MODEL_NAME = "NbAiLab/whisper-large-sme" #this always needs to stay in line 8 :D sorry for the hackiness
lang = "fi"

share = (os.environ.get("SHARE", "False")[0].lower() in "ty1") or None
auth_token = os.environ.get("AUTH_TOKEN") or True
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

@spaces.GPU(duration=120)
def transcribe(file):  #microphone, file_upload):
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        chunk_length_s=30,
        device=device,
        token=auth_token,
    )
    pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
    #pipe.to(device)
    warn_output = ""
    # if (microphone is not None) and (file_upload is not None):
    #     warn_output = (
    #         "WARNING: You've uploaded an audio file and used the microphone. "
    #         "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
    #     )

    # elif (microphone is None) and (file_upload is None):
    #     return "ERROR: You have to either use the microphone or upload an audio file"

    # file = microphone if microphone is not None else file_upload

    text = pipe(file)["text"]

    return warn_output + text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str


def yt_transcribe(yt_url):
    pipe = pipeline(
        task="automatic-speech-recognition",
        model=MODEL_NAME,
        chunk_length_s=30,
        device=device,
        token=auth_token,
    )
    pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")

    yt = pt.YouTube(yt_url)
    html_embed_str = _return_yt_html_embed(yt_url)
    stream = yt.streams.filter(only_audio=True)[0]
    stream.download(filename="audio.mp3")

    text = pipe("audio.mp3")["text"]

    return html_embed_str, text


demo = gr.Blocks()

mf_transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.components.Audio(sources=['upload', 'microphone'], type="filepath"),
    ],
    outputs="text",
    theme="huggingface",
    title="Whisper Demo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
        f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
        " of arbitrary length."
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[gr.components.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
    examples=[["https://www.youtube.com/watch?v=mukeSSa5GKo"]],
    outputs=["html", "text"],
    theme="huggingface",
    title="Whisper Demo: Transcribe YouTube",
    description=(
        "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
        f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
        " arbitrary length."
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])

demo.launch(share=True).queue()