import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from huggingface_hub import PyTorchModelHubMixin from kornia.filters import laplacian from engine.BiRefNet.config import Config from engine.BiRefNet.dataset import class_labels_TR_sorted from .backbones.build_backbone import build_backbone from .modules.aspp import ASPP, ASPPDeformable from .modules.decoder_blocks import BasicDecBlk, ResBlk from .modules.lateral_blocks import BasicLatBlk from .refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet from .refinement.stem_layer import StemLayer def image2patches( image, grid_h=2, grid_w=2, patch_ref=None, transformation="b c (hg h) (wg w) -> (b hg wg) c h w", ): if patch_ref is not None: grid_h, grid_w = ( image.shape[-2] // patch_ref.shape[-2], image.shape[-1] // patch_ref.shape[-1], ) patches = rearrange(image, transformation, hg=grid_h, wg=grid_w) return patches def patches2image( patches, grid_h=2, grid_w=2, patch_ref=None, transformation="(b hg wg) c h w -> b c (hg h) (wg w)", ): if patch_ref is not None: grid_h, grid_w = ( patch_ref.shape[-2] // patches[0].shape[-2], patch_ref.shape[-1] // patches[0].shape[-1], ) image = rearrange(patches, transformation, hg=grid_h, wg=grid_w) return image class BiRefNet( nn.Module, PyTorchModelHubMixin, library_name="birefnet", repo_url="https://github.com/ZhengPeng7/BiRefNet", tags=[ "Image Segmentation", "Background Removal", "Mask Generation", "Dichotomous Image Segmentation", "Camouflaged Object Detection", "Salient Object Detection", ], ): def __init__(self, bb_pretrained=True): super(BiRefNet, self).__init__() self.config = Config() self.epoch = 1 self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) channels = self.config.lateral_channels_in_collection if self.config.auxiliary_classification: self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.cls_head = nn.Sequential( nn.Linear(channels[0], len(class_labels_TR_sorted)) ) if self.config.squeeze_block: self.squeeze_module = nn.Sequential( *[ eval(self.config.squeeze_block.split("_x")[0])( channels[0] + sum(self.config.cxt), channels[0] ) for _ in range(eval(self.config.squeeze_block.split("_x")[1])) ] ) self.decoder = Decoder(channels) if self.config.ender: self.dec_end = nn.Sequential( nn.Conv2d(1, 16, 3, 1, 1), nn.Conv2d(16, 1, 3, 1, 1), nn.ReLU(inplace=True), ) # refine patch-level segmentation if self.config.refine: if self.config.refine == "itself": self.stem_layer = StemLayer( in_channels=3 + 1, inter_channels=48, out_channels=3, norm_layer="BN" if self.config.batch_size > 1 else "LN", ) else: self.refiner = eval( "{}({})".format(self.config.refine, "in_channels=3+1") ) if self.config.freeze_bb: # Freeze the backbone... print(self.named_parameters()) for key, value in self.named_parameters(): if "bb." in key and "refiner." not in key: value.requires_grad = False def forward_enc(self, x): if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]: x1 = self.bb.conv1(x) x2 = self.bb.conv2(x1) x3 = self.bb.conv3(x2) x4 = self.bb.conv4(x3) else: x1, x2, x3, x4 = self.bb(x) if self.config.mul_scl_ipt == "cat": B, C, H, W = x.shape x1_, x2_, x3_, x4_ = self.bb( F.interpolate( x, size=(H // 2, W // 2), mode="bilinear", align_corners=True ) ) x1 = torch.cat( [ x1, F.interpolate( x1_, size=x1.shape[2:], mode="bilinear", align_corners=True ), ], dim=1, ) x2 = torch.cat( [ x2, F.interpolate( x2_, size=x2.shape[2:], mode="bilinear", align_corners=True ), ], dim=1, ) x3 = torch.cat( [ x3, F.interpolate( x3_, size=x3.shape[2:], mode="bilinear", align_corners=True ), ], dim=1, ) x4 = torch.cat( [ x4, F.interpolate( x4_, size=x4.shape[2:], mode="bilinear", align_corners=True ), ], dim=1, ) elif self.config.mul_scl_ipt == "add": B, C, H, W = x.shape x1_, x2_, x3_, x4_ = self.bb( F.interpolate( x, size=(H // 2, W // 2), mode="bilinear", align_corners=True ) ) x1 = x1 + F.interpolate( x1_, size=x1.shape[2:], mode="bilinear", align_corners=True ) x2 = x2 + F.interpolate( x2_, size=x2.shape[2:], mode="bilinear", align_corners=True ) x3 = x3 + F.interpolate( x3_, size=x3.shape[2:], mode="bilinear", align_corners=True ) x4 = x4 + F.interpolate( x4_, size=x4.shape[2:], mode="bilinear", align_corners=True ) class_preds = ( self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None ) if self.config.cxt: x4 = torch.cat( ( *[ F.interpolate( x1, size=x4.shape[2:], mode="bilinear", align_corners=True ), F.interpolate( x2, size=x4.shape[2:], mode="bilinear", align_corners=True ), F.interpolate( x3, size=x4.shape[2:], mode="bilinear", align_corners=True ), ][-len(self.config.cxt) :], x4, ), dim=1, ) return (x1, x2, x3, x4), class_preds def forward_ori(self, x): ########## Encoder ########## (x1, x2, x3, x4), class_preds = self.forward_enc(x) if self.config.squeeze_block: x4 = self.squeeze_module(x4) ########## Decoder ########## features = [x, x1, x2, x3, x4] if self.training and self.config.out_ref: features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) scaled_preds = self.decoder(features) return scaled_preds, class_preds def forward(self, x): scaled_preds, class_preds = self.forward_ori(x) class_preds_lst = [class_preds] return [scaled_preds, class_preds_lst] if self.training else scaled_preds class Decoder(nn.Module): def __init__(self, channels): super(Decoder, self).__init__() self.config = Config() DecoderBlock = eval(self.config.dec_blk) LateralBlock = eval(self.config.lat_blk) if self.config.dec_ipt: self.split = self.config.dec_ipt_split N_dec_ipt = 64 DBlock = SimpleConvs ic = 64 ipt_cha_opt = 1 self.ipt_blk5 = DBlock( 2**10 * 3 if self.split else 3, [N_dec_ipt, channels[0] // 8][ipt_cha_opt], inter_channels=ic, ) self.ipt_blk4 = DBlock( 2**8 * 3 if self.split else 3, [N_dec_ipt, channels[0] // 8][ipt_cha_opt], inter_channels=ic, ) self.ipt_blk3 = DBlock( 2**6 * 3 if self.split else 3, [N_dec_ipt, channels[1] // 8][ipt_cha_opt], inter_channels=ic, ) self.ipt_blk2 = DBlock( 2**4 * 3 if self.split else 3, [N_dec_ipt, channels[2] // 8][ipt_cha_opt], inter_channels=ic, ) self.ipt_blk1 = DBlock( 2**0 * 3 if self.split else 3, [N_dec_ipt, channels[3] // 8][ipt_cha_opt], inter_channels=ic, ) else: self.split = None self.decoder_block4 = DecoderBlock( channels[0] + ( [N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 ), channels[1], ) self.decoder_block3 = DecoderBlock( channels[1] + ( [N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 ), channels[2], ) self.decoder_block2 = DecoderBlock( channels[2] + ( [N_dec_ipt, channels[1] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 ), channels[3], ) self.decoder_block1 = DecoderBlock( channels[3] + ( [N_dec_ipt, channels[2] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 ), channels[3] // 2, ) self.conv_out1 = nn.Sequential( nn.Conv2d( channels[3] // 2 + ( [N_dec_ipt, channels[3] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 ), 1, 1, 1, 0, ) ) self.lateral_block4 = LateralBlock(channels[1], channels[1]) self.lateral_block3 = LateralBlock(channels[2], channels[2]) self.lateral_block2 = LateralBlock(channels[3], channels[3]) if self.config.ms_supervision: self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) if self.config.out_ref: _N = 16 self.gdt_convs_4 = nn.Sequential( nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True), ) self.gdt_convs_3 = nn.Sequential( nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True), ) self.gdt_convs_2 = nn.Sequential( nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True), ) self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) def forward(self, features): if self.training and self.config.out_ref: outs_gdt_pred = [] outs_gdt_label = [] x, x1, x2, x3, x4, gdt_gt = features else: x, x1, x2, x3, x4 = features outs = [] if self.config.dec_ipt: patches_batch = ( image2patches( x, patch_ref=x4, transformation="b c (hg h) (wg w) -> b (c hg wg) h w", ) if self.split else x ) x4 = torch.cat( ( x4, self.ipt_blk5( F.interpolate( patches_batch, size=x4.shape[2:], mode="bilinear", align_corners=True, ) ), ), 1, ) p4 = self.decoder_block4(x4) m4 = ( self.conv_ms_spvn_4(p4) if self.config.ms_supervision and self.training else None ) if self.config.out_ref: p4_gdt = self.gdt_convs_4(p4) if self.training: # >> GT: m4_dia = m4 gdt_label_main_4 = gdt_gt * F.interpolate( m4_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True ) outs_gdt_label.append(gdt_label_main_4) # >> Pred: gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) outs_gdt_pred.append(gdt_pred_4) gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() # >> Finally: p4 = p4 * gdt_attn_4 _p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True) _p3 = _p4 + self.lateral_block4(x3) if self.config.dec_ipt: patches_batch = ( image2patches( x, patch_ref=_p3, transformation="b c (hg h) (wg w) -> b (c hg wg) h w", ) if self.split else x ) _p3 = torch.cat( ( _p3, self.ipt_blk4( F.interpolate( patches_batch, size=x3.shape[2:], mode="bilinear", align_corners=True, ) ), ), 1, ) p3 = self.decoder_block3(_p3) m3 = ( self.conv_ms_spvn_3(p3) if self.config.ms_supervision and self.training else None ) if self.config.out_ref: p3_gdt = self.gdt_convs_3(p3) if self.training: # >> GT: # m3 --dilation--> m3_dia # G_3^gt * m3_dia --> G_3^m, which is the label of gradient m3_dia = m3 gdt_label_main_3 = gdt_gt * F.interpolate( m3_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True ) outs_gdt_label.append(gdt_label_main_3) # >> Pred: # p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx # F_3^G --sigmoid--> A_3^G gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) outs_gdt_pred.append(gdt_pred_3) gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() # >> Finally: # p3 = p3 * A_3^G p3 = p3 * gdt_attn_3 _p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True) _p2 = _p3 + self.lateral_block3(x2) if self.config.dec_ipt: patches_batch = ( image2patches( x, patch_ref=_p2, transformation="b c (hg h) (wg w) -> b (c hg wg) h w", ) if self.split else x ) _p2 = torch.cat( ( _p2, self.ipt_blk3( F.interpolate( patches_batch, size=x2.shape[2:], mode="bilinear", align_corners=True, ) ), ), 1, ) p2 = self.decoder_block2(_p2) m2 = ( self.conv_ms_spvn_2(p2) if self.config.ms_supervision and self.training else None ) if self.config.out_ref: p2_gdt = self.gdt_convs_2(p2) if self.training: # >> GT: m2_dia = m2 gdt_label_main_2 = gdt_gt * F.interpolate( m2_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True ) outs_gdt_label.append(gdt_label_main_2) # >> Pred: gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) outs_gdt_pred.append(gdt_pred_2) gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() # >> Finally: p2 = p2 * gdt_attn_2 _p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True) _p1 = _p2 + self.lateral_block2(x1) if self.config.dec_ipt: patches_batch = ( image2patches( x, patch_ref=_p1, transformation="b c (hg h) (wg w) -> b (c hg wg) h w", ) if self.split else x ) _p1 = torch.cat( ( _p1, self.ipt_blk2( F.interpolate( patches_batch, size=x1.shape[2:], mode="bilinear", align_corners=True, ) ), ), 1, ) _p1 = self.decoder_block1(_p1) _p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True) if self.config.dec_ipt: patches_batch = ( image2patches( x, patch_ref=_p1, transformation="b c (hg h) (wg w) -> b (c hg wg) h w", ) if self.split else x ) _p1 = torch.cat( ( _p1, self.ipt_blk1( F.interpolate( patches_batch, size=x.shape[2:], mode="bilinear", align_corners=True, ) ), ), 1, ) p1_out = self.conv_out1(_p1) if self.config.ms_supervision and self.training: outs.append(m4) outs.append(m3) outs.append(m2) outs.append(p1_out) return ( outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs) ) class SimpleConvs(nn.Module): def __init__(self, in_channels: int, out_channels: int, inter_channels=64) -> None: super().__init__() self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) def forward(self, x): return self.conv_out(self.conv1(x)) ########### class BiRefNetC2F( nn.Module, PyTorchModelHubMixin, library_name="birefnet_c2f", repo_url="https://github.com/ZhengPeng7/BiRefNet_C2F", tags=[ "Image Segmentation", "Background Removal", "Mask Generation", "Dichotomous Image Segmentation", "Camouflaged Object Detection", "Salient Object Detection", ], ): def __init__(self, bb_pretrained=True): super(BiRefNetC2F, self).__init__() self.config = Config() self.epoch = 1 self.grid = 4 self.model_coarse = BiRefNet(bb_pretrained=True) self.model_fine = BiRefNet(bb_pretrained=True) self.input_mixer = nn.Conv2d(4, 3, 1, 1, 0) self.output_mixer_merge_post = nn.Sequential( nn.Conv2d(1, 16, 3, 1, 1), nn.Conv2d(16, 1, 3, 1, 1) ) def forward(self, x): x_ori = x.clone() ########## Coarse ########## x = F.interpolate( x, size=[s // self.grid for s in self.config.size[::-1]], mode="bilinear", align_corners=True, ) if self.training: scaled_preds, class_preds_lst = self.model_coarse(x) else: scaled_preds = self.model_coarse(x) ########## Fine ########## x_HR_patches = image2patches( x_ori, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" ) pred = F.interpolate( ( scaled_preds[-1] if not (self.config.out_ref and self.training) else scaled_preds[1][-1] ), size=x_ori.shape[2:], mode="bilinear", align_corners=True, ) pred_patches = image2patches( pred, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" ) t = torch.cat([x_HR_patches, pred_patches], dim=1) x_HR = self.input_mixer(t) pred_patches = image2patches( pred, patch_ref=x_HR, transformation="b c (hg h) (wg w) -> b (c hg wg) h w" ) if self.training: scaled_preds_HR, class_preds_lst_HR = self.model_fine(x_HR) else: scaled_preds_HR = self.model_fine(x_HR) if self.training: if self.config.out_ref: [outs_gdt_pred, outs_gdt_label], outs = scaled_preds [outs_gdt_pred_HR, outs_gdt_label_HR], outs_HR = scaled_preds_HR for idx_out, out_HR in enumerate(outs_HR): outs_HR[idx_out] = self.output_mixer_merge_post( patches2image( out_HR, grid_h=self.grid, grid_w=self.grid, transformation="(b hg wg) c h w -> b c (hg h) (wg w)", ) ) return [ ( [ outs_gdt_pred + outs_gdt_pred_HR, outs_gdt_label + outs_gdt_label_HR, ], outs + outs_HR, ), class_preds_lst, ] # handle gt here else: return [ scaled_preds + [ self.output_mixer_merge_post( patches2image( scaled_pred_HR, grid_h=self.grid, grid_w=self.grid, transformation="(b hg wg) c h w -> b c (hg h) (wg w)", ) ) for scaled_pred_HR in scaled_preds_HR ], class_preds_lst, ] else: return scaled_preds + [ self.output_mixer_merge_post( patches2image( scaled_pred_HR, grid_h=self.grid, grid_w=self.grid, transformation="(b hg wg) c h w -> b c (hg h) (wg w)", ) ) for scaled_pred_HR in scaled_preds_HR ]