|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from itertools import product |
|
|
|
def compute_prf1(count, miss, fp): |
|
""" |
|
Code modified from https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/evaluation/RH_evaluation/evaluation.py#L90 |
|
""" |
|
if count == 0: |
|
return 0, 0, 0 |
|
all_tp = count - miss |
|
all_fp = fp |
|
all_fn = miss |
|
if all_tp == 0: |
|
return 0., 0., 0. |
|
all_f1_score = round(all_tp / (all_tp + 0.5 * (all_fp + all_fn)), 2) |
|
all_recall = round(all_tp / (all_tp + all_fn), 2) |
|
all_precision = round(all_tp / (all_tp + all_fp), 2) |
|
return 100. * all_precision, 100.* all_recall, 100. * all_f1_score |
|
|
|
def match_2d_greedy( |
|
pred_kps, |
|
gtkp, |
|
valid_mask, |
|
imgPath=None, |
|
baseline=None, |
|
iou_thresh=0.05, |
|
valid=None, |
|
ind=-1): |
|
''' |
|
Code modified from: https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/trace2/evaluation/eval_3DPW.py#L232 |
|
matches groundtruth keypoints to the detection by considering all possible matchings. |
|
:return: best possible matching, a list of tuples, where each tuple corresponds to one match of pred_person.to gt_person. |
|
the order within one tuple is as follows (idx_pred_kps, idx_gt_kps) |
|
''' |
|
predList = np.arange(len(pred_kps)) |
|
gtList = np.arange(len(gtkp)) |
|
|
|
|
|
combs = list(product(predList, gtList)) |
|
|
|
errors_per_pair = {} |
|
errors_per_pair_list = [] |
|
for comb in combs: |
|
vmask = valid_mask[comb[1]] |
|
assert vmask.sum()>0, print('no valid points') |
|
errors_per_pair[str(comb)] = np.linalg.norm(pred_kps[comb[0]][vmask, :2] - gtkp[comb[1]][vmask, :2], 2) |
|
errors_per_pair_list.append(errors_per_pair[str(comb)]) |
|
|
|
gtAssigned = np.zeros((len(gtkp),), dtype=bool) |
|
opAssigned = np.zeros((len(pred_kps),), dtype=bool) |
|
errors_per_pair_list = np.array(errors_per_pair_list) |
|
|
|
bestMatch = [] |
|
excludedGtBecauseInvalid = [] |
|
falsePositiveCounter = 0 |
|
while np.sum(gtAssigned) < len(gtAssigned) and np.sum( |
|
opAssigned) + falsePositiveCounter < len(pred_kps): |
|
found = False |
|
falsePositive = False |
|
while not(found): |
|
if sum(np.inf == errors_per_pair_list) == len( |
|
errors_per_pair_list): |
|
print('something went wrong here') |
|
|
|
minIdx = np.argmin(errors_per_pair_list) |
|
minComb = combs[minIdx] |
|
|
|
iou = get_bbx_overlap( |
|
pred_kps[minComb[0]], gtkp[minComb[1]]) |
|
|
|
|
|
if not(opAssigned[minComb[0]]) and not( |
|
gtAssigned[minComb[1]]) and iou >= iou_thresh: |
|
|
|
found = True |
|
errors_per_pair_list[minIdx] = np.inf |
|
else: |
|
errors_per_pair_list[minIdx] = np.inf |
|
|
|
|
|
if iou < iou_thresh: |
|
|
|
|
|
found = True |
|
falsePositive = True |
|
falsePositiveCounter += 1 |
|
|
|
|
|
|
|
if not(valid is None): |
|
if valid[minComb[1]]: |
|
if not falsePositive: |
|
bestMatch.append(minComb) |
|
opAssigned[minComb[0]] = True |
|
gtAssigned[minComb[1]] = True |
|
else: |
|
gtAssigned[minComb[1]] = True |
|
excludedGtBecauseInvalid.append(minComb[1]) |
|
|
|
elif not falsePositive: |
|
|
|
bestMatch.append(minComb) |
|
opAssigned[minComb[0]] = True |
|
gtAssigned[minComb[1]] = True |
|
|
|
bestMatch = np.array(bestMatch) |
|
|
|
|
|
opAssigned = [] |
|
gtAssigned = [] |
|
for pair in bestMatch: |
|
opAssigned.append(pair[0]) |
|
gtAssigned.append(pair[1]) |
|
opAssigned.sort() |
|
gtAssigned.sort() |
|
|
|
falsePositives = [] |
|
misses = [] |
|
|
|
|
|
opIds = np.arange(len(pred_kps)) |
|
|
|
notAssignedIds = np.setdiff1d(opIds, opAssigned) |
|
for notAssignedId in notAssignedIds: |
|
falsePositives.append(notAssignedId) |
|
gtIds = np.arange(len(gtList)) |
|
|
|
notAssignedIdsGt = np.setdiff1d(gtIds, gtAssigned) |
|
|
|
|
|
for notAssignedIdGt in notAssignedIdsGt: |
|
if not(valid is None): |
|
if valid[notAssignedIdGt]: |
|
|
|
misses.append(notAssignedIdGt) |
|
else: |
|
excludedGtBecauseInvalid.append(notAssignedIdGt) |
|
else: |
|
|
|
misses.append(notAssignedIdGt) |
|
|
|
return bestMatch, falsePositives, misses |
|
|
|
def get_bbx_overlap(p1, p2): |
|
""" |
|
Code modifed from https://github.com/Arthur151/ROMP/blob/4eebd3647f57d291d26423e51f0d514ff7197cb3/simple_romp/trace2/evaluation/eval_3DPW.py#L185 |
|
""" |
|
min_p1 = np.min(p1, axis=0) |
|
min_p2 = np.min(p2, axis=0) |
|
max_p1 = np.max(p1, axis=0) |
|
max_p2 = np.max(p2, axis=0) |
|
|
|
bb1 = {} |
|
bb2 = {} |
|
|
|
bb1['x1'] = min_p1[0] |
|
bb1['x2'] = max_p1[0] |
|
bb1['y1'] = min_p1[1] |
|
bb1['y2'] = max_p1[1] |
|
bb2['x1'] = min_p2[0] |
|
bb2['x2'] = max_p2[0] |
|
bb2['y1'] = min_p2[1] |
|
bb2['y2'] = max_p2[1] |
|
|
|
assert bb1['x1'] < bb1['x2'] |
|
assert bb1['y1'] < bb1['y2'] |
|
assert bb2['x1'] < bb2['x2'] |
|
assert bb2['y1'] < bb2['y2'] |
|
|
|
x_left = max(bb1['x1'], bb2['x1']) |
|
y_top = max(bb1['y1'], bb2['y1']) |
|
x_right = min(bb1['x2'], bb2['x2']) |
|
y_bottom = min(bb1['y2'], bb2['y2']) |
|
|
|
|
|
|
|
intersection_area = max(0, x_right - x_left + 1) * \ |
|
max(0, y_bottom - y_top + 1) |
|
|
|
|
|
bb1_area = (bb1['x2'] - bb1['x1'] + 1) * (bb1['y2'] - bb1['y1'] + 1) |
|
bb2_area = (bb2['x2'] - bb2['x1'] + 1) * (bb2['y2'] - bb2['y1'] + 1) |
|
|
|
|
|
|
|
|
|
iou = intersection_area / float(bb1_area + bb2_area - intersection_area) |
|
|
|
return iou |
|
|
|
|
|
class AverageMeter(object): |
|
""" |
|
Code mofied from https://github.com/pytorch/examples/blob/main/imagenet/main.py#L423 |
|
Computes and stores the average and current value |
|
""" |
|
|
|
def __init__(self, name, fmt=':f'): |
|
self.name = name |
|
self.fmt = fmt |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
|
|
def update(self, val, n=1): |
|
if type(val) == torch.Tensor: |
|
val = val.detach() |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
|
|
def __str__(self): |
|
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' |
|
return fmtstr.format(**self.__dict__) |
|
|
|
|