|
import numpy as np |
|
import warnings |
|
import torch |
|
|
|
|
|
def bbox_xyxy_to_cxcywh(bboxes: np.ndarray, scale=1.0, device=None): |
|
w = bboxes[..., 2] - bboxes[..., 0] |
|
h = bboxes[..., 3] - bboxes[..., 1] |
|
cx = (bboxes[..., 0] + bboxes[..., 2]) / 2.0 |
|
cy = (bboxes[..., 1] + bboxes[..., 3]) / 2.0 |
|
new_bboxes = torch.stack([cx, cy, w * scale, h * scale], dim=-1) |
|
if device is not None: |
|
new_bboxes = torch.tensor(new_bboxes, device=device) |
|
return new_bboxes |
|
|
|
|
|
def compute_iou(bboxA, bboxB): |
|
"""Compute the Intersection over Union (IoU) between two boxes . |
|
|
|
Args: |
|
bboxA (list): The first bbox info (left, top, right, bottom, score). |
|
bboxB (list): The second bbox info (left, top, right, bottom, score). |
|
|
|
Returns: |
|
float: The IoU value. |
|
""" |
|
|
|
x1 = max(bboxA[0], bboxB[0]) |
|
y1 = max(bboxA[1], bboxB[1]) |
|
x2 = min(bboxA[2], bboxB[2]) |
|
y2 = min(bboxA[3], bboxB[3]) |
|
|
|
inter_area = max(0, x2 - x1) * max(0, y2 - y1) |
|
|
|
bboxA_area = (bboxA[2] - bboxA[0]) * (bboxA[3] - bboxA[1]) |
|
bboxB_area = (bboxB[2] - bboxB[0]) * (bboxB[3] - bboxB[1]) |
|
union_area = float(bboxA_area + bboxB_area - inter_area) |
|
if union_area == 0: |
|
union_area = 1e-8 |
|
warnings.warn("union_area=0 is unexpected") |
|
|
|
iou = inter_area / union_area |
|
|
|
return iou |
|
|
|
|
|
def track_by_iou(res, results_last, thr): |
|
"""Get track id using IoU tracking greedily. |
|
|
|
Args: |
|
res (dict): The bbox & pose results of the person instance. |
|
results_last (list[dict]): The bbox & pose & track_id info of the |
|
last frame (bbox_result, pose_result, track_id). |
|
thr (float): The threshold for iou tracking. |
|
|
|
Returns: |
|
int: The track id for the new person instance. |
|
list[dict]: The bbox & pose & track_id info of the persons |
|
that have not been matched on the last frame. |
|
dict: The matched person instance on the last frame. |
|
""" |
|
|
|
bbox = list(res["bbox"]) |
|
|
|
max_iou_score = -1 |
|
max_index = -1 |
|
match_result = {} |
|
for index, res_last in enumerate(results_last): |
|
bbox_last = list(res_last["bbox"]) |
|
|
|
iou_score = _compute_iou(bbox, bbox_last) |
|
if iou_score > max_iou_score: |
|
max_iou_score = iou_score |
|
max_index = index |
|
|
|
if max_iou_score > thr: |
|
track_id = results_last[max_index]["track_id"] |
|
match_result = results_last[max_index] |
|
del results_last[max_index] |
|
else: |
|
track_id = -1 |
|
|
|
return track_id, results_last, match_result |
|
|
|
|
|
def track_by_area(humans, target_img_size, threshold=0.3): |
|
if len(humans) < 1: |
|
return None |
|
|
|
IMAGE_AREA = target_img_size**2 |
|
target_human = None |
|
max_area = -1 |
|
for human in humans: |
|
j2d_coco = human["j2d"].to(torch.float) |
|
|
|
|
|
j2d_area = (j2d_coco[..., 0].max() - j2d_coco[..., 0].min()) * ( |
|
j2d_coco[..., 1].max() - j2d_coco[..., 1].min() |
|
) |
|
if max_area < j2d_area: |
|
max_area = j2d_area |
|
target_human = human |
|
|
|
|
|
return target_human |
|
|