|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as quaternions to axis/angle. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) |
|
half_angles = torch.atan2(norms, quaternions[..., :1]) |
|
angles = 2 * half_angles |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
) |
|
return quaternions[..., 1:] / sin_half_angles_over_angles |
|
|
|
|
|
|
|
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as rotation matrices to quaternions. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
|
|
batch_dim = matrix.shape[:-2] |
|
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( |
|
matrix.reshape(batch_dim + (9,)), dim=-1 |
|
) |
|
|
|
q_abs = _sqrt_positive_part( |
|
torch.stack( |
|
[ |
|
1.0 + m00 + m11 + m22, |
|
1.0 + m00 - m11 - m22, |
|
1.0 - m00 + m11 - m22, |
|
1.0 - m00 - m11 + m22, |
|
], |
|
dim=-1, |
|
) |
|
) |
|
|
|
|
|
quat_by_rijk = torch.stack( |
|
[ |
|
|
|
|
|
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), |
|
|
|
|
|
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), |
|
|
|
|
|
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), |
|
|
|
|
|
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), |
|
], |
|
dim=-2, |
|
) |
|
|
|
|
|
|
|
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) |
|
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) |
|
|
|
|
|
|
|
|
|
return quat_candidates[ |
|
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : |
|
].reshape(batch_dim + (4,)) |
|
|
|
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Returns torch.sqrt(torch.max(0, x)) |
|
but with a zero subgradient where x is 0. |
|
""" |
|
ret = torch.zeros_like(x) |
|
positive_mask = x > 0 |
|
ret[positive_mask] = torch.sqrt(x[positive_mask]) |
|
return ret |
|
|
|
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as rotation matrices to axis/angle. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
|
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) |
|
|
|
def euler_angles_to_axis_angle(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: |
|
""" |
|
Convert rotations given as Euler angles in radians to axis/angle. |
|
|
|
Args: |
|
euler_angles: Euler angles in radians as tensor of shape (..., 3). |
|
convention: Convention string of three uppercase letters from |
|
{"X", "Y", and "Z"}. |
|
|
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
return matrix_to_axis_angle(euler_angles_to_matrix(euler_angles, convention)) |
|
|
|
def euler_angles_to_matrix(euler_angles: torch.Tensor, convention: str) -> torch.Tensor: |
|
""" |
|
Convert rotations given as Euler angles in radians to rotation matrices. |
|
|
|
Args: |
|
euler_angles: Euler angles in radians as tensor of shape (..., 3). |
|
convention: Convention string of three uppercase letters from |
|
{"X", "Y", and "Z"}. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3: |
|
raise ValueError("Invalid input euler angles.") |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
matrices = [ |
|
_axis_angle_rotation(c, e) |
|
for c, e in zip(convention, torch.unbind(euler_angles, -1)) |
|
] |
|
|
|
return torch.matmul(torch.matmul(matrices[0], matrices[1]), matrices[2]) |
|
|
|
def _axis_angle_rotation(axis: str, angle: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Return the rotation matrices for one of the rotations about an axis |
|
of which Euler angles describe, for each value of the angle given. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z". |
|
angle: any shape tensor of Euler angles in radians |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
|
|
cos = torch.cos(angle) |
|
sin = torch.sin(angle) |
|
one = torch.ones_like(angle) |
|
zero = torch.zeros_like(angle) |
|
|
|
if axis == "X": |
|
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos) |
|
elif axis == "Y": |
|
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos) |
|
elif axis == "Z": |
|
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one) |
|
else: |
|
raise ValueError("letter must be either X, Y or Z.") |
|
|
|
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3)) |
|
|
|
def axis_angle_to_quaternion(axis_angle: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as axis/angle to quaternions. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
quaternions with real part first, as tensor of shape (..., 4). |
|
""" |
|
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) |
|
half_angles = angles * 0.5 |
|
eps = 1e-6 |
|
small_angles = angles.abs() < eps |
|
sin_half_angles_over_angles = torch.empty_like(angles) |
|
sin_half_angles_over_angles[~small_angles] = ( |
|
torch.sin(half_angles[~small_angles]) / angles[~small_angles] |
|
) |
|
|
|
|
|
sin_half_angles_over_angles[small_angles] = ( |
|
0.5 - (angles[small_angles] * angles[small_angles]) / 48 |
|
) |
|
quaternions = torch.cat( |
|
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 |
|
) |
|
return quaternions |
|
|
|
|
|
def axis_angle_to_matrix(axis_angle: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as axis/angle to rotation matrices. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) |
|
|
|
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as quaternions to rotation matrices. |
|
|
|
Args: |
|
quaternions: quaternions with real part first, |
|
as tensor of shape (..., 4). |
|
|
|
Returns: |
|
Rotation matrices as tensor of shape (..., 3, 3). |
|
""" |
|
r, i, j, k = torch.unbind(quaternions, -1) |
|
|
|
two_s = 2.0 / (quaternions * quaternions).sum(-1) |
|
|
|
o = torch.stack( |
|
( |
|
1 - two_s * (j * j + k * k), |
|
two_s * (i * j - k * r), |
|
two_s * (i * k + j * r), |
|
two_s * (i * j + k * r), |
|
1 - two_s * (i * i + k * k), |
|
two_s * (j * k - i * r), |
|
two_s * (i * k - j * r), |
|
two_s * (j * k + i * r), |
|
1 - two_s * (i * i + j * j), |
|
), |
|
-1, |
|
) |
|
return o.reshape(quaternions.shape[:-1] + (3, 3)) |
|
|
|
def axis_angle_to_euler_angles(axis_angle: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Convert rotations given as Euler angles in radians to axis/angle. |
|
|
|
Args: |
|
axis_angle: Rotations given as a vector in axis angle form, |
|
as a tensor of shape (..., 3), where the magnitude is |
|
the angle turned anticlockwise in radians around the |
|
vector's direction. |
|
Returns: |
|
Rotations given as a vector in axis angle form, as a tensor |
|
of shape (..., 3), where the magnitude is the angle |
|
turned anticlockwise in radians around the vector's |
|
direction. |
|
""" |
|
return matrix_to_euler_angles(axis_angle_to_matrix(axis_angle), 'XYZ') |
|
|
|
def _angle_from_tan( |
|
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool |
|
) -> torch.Tensor: |
|
""" |
|
Extract the first or third Euler angle from the two members of |
|
the matrix which are positive constant times its sine and cosine. |
|
|
|
Args: |
|
axis: Axis label "X" or "Y or "Z" for the angle we are finding. |
|
other_axis: Axis label "X" or "Y or "Z" for the middle axis in the |
|
convention. |
|
data: Rotation matrices as tensor of shape (..., 3, 3). |
|
horizontal: Whether we are looking for the angle for the third axis, |
|
which means the relevant entries are in the same row of the |
|
rotation matrix. If not, they are in the same column. |
|
tait_bryan: Whether the first and third axes in the convention differ. |
|
|
|
Returns: |
|
Euler Angles in radians for each matrix in data as a tensor |
|
of shape (...). |
|
""" |
|
|
|
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis] |
|
if horizontal: |
|
i2, i1 = i1, i2 |
|
even = (axis + other_axis) in ["XY", "YZ", "ZX"] |
|
if horizontal == even: |
|
return torch.atan2(data[..., i1], data[..., i2]) |
|
if tait_bryan: |
|
return torch.atan2(-data[..., i2], data[..., i1]) |
|
return torch.atan2(data[..., i2], -data[..., i1]) |
|
|
|
|
|
def _index_from_letter(letter: str) -> int: |
|
if letter == "X": |
|
return 0 |
|
if letter == "Y": |
|
return 1 |
|
if letter == "Z": |
|
return 2 |
|
raise ValueError("letter must be either X, Y or Z.") |
|
|
|
|
|
def matrix_to_euler_angles(matrix: torch.Tensor, convention: str) -> torch.Tensor: |
|
""" |
|
Convert rotations given as rotation matrices to Euler angles in radians. |
|
|
|
Args: |
|
matrix: Rotation matrices as tensor of shape (..., 3, 3). |
|
convention: Convention string of three uppercase letters. |
|
|
|
Returns: |
|
Euler angles in radians as tensor of shape (..., 3). |
|
""" |
|
if len(convention) != 3: |
|
raise ValueError("Convention must have 3 letters.") |
|
if convention[1] in (convention[0], convention[2]): |
|
raise ValueError(f"Invalid convention {convention}.") |
|
for letter in convention: |
|
if letter not in ("X", "Y", "Z"): |
|
raise ValueError(f"Invalid letter {letter} in convention string.") |
|
if matrix.size(-1) != 3 or matrix.size(-2) != 3: |
|
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") |
|
i0 = _index_from_letter(convention[0]) |
|
i2 = _index_from_letter(convention[2]) |
|
tait_bryan = i0 != i2 |
|
if tait_bryan: |
|
central_angle = torch.asin( |
|
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0) |
|
) |
|
else: |
|
central_angle = torch.acos(matrix[..., i0, i0]) |
|
|
|
o = ( |
|
_angle_from_tan( |
|
convention[0], convention[1], matrix[..., i2], False, tait_bryan |
|
), |
|
central_angle, |
|
_angle_from_tan( |
|
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan |
|
), |
|
) |
|
return torch.stack(o, -1) |
|
|
|
|
|
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts 6D rotation representation by Zhou et al. [1] to rotation matrix |
|
using Gram--Schmidt orthogonalisation per Section B of [1]. |
|
Args: |
|
d6: 6D rotation representation, of size (*, 6) |
|
|
|
Returns: |
|
batch of rotation matrices of size (*, 3, 3) |
|
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
On the Continuity of Rotation Representations in Neural Networks. |
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
""" |
|
|
|
a1, a2 = d6[..., :3], d6[..., 3:] |
|
b1 = F.normalize(a1, dim=-1) |
|
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 |
|
b2 = F.normalize(b2, dim=-1) |
|
b3 = torch.cross(b1, b2, dim=-1) |
|
return torch.stack((b1, b2, b3), dim=-2) |
|
|
|
|
|
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Converts rotation matrices to 6D rotation representation by Zhou et al. [1] |
|
by dropping the last row. Note that 6D representation is not unique. |
|
Args: |
|
matrix: batch of rotation matrices of size (*, 3, 3) |
|
|
|
Returns: |
|
6D rotation representation, of size (*, 6) |
|
|
|
[1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. |
|
On the Continuity of Rotation Representations in Neural Networks. |
|
IEEE Conference on Computer Vision and Pattern Recognition, 2019. |
|
Retrieved from http://arxiv.org/abs/1812.07035 |
|
""" |
|
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6) |
|
|
|
|
|
def axis_angle_to_rotation_6d(axis_angle: torch.Tensor) -> torch.Tensor: |
|
return matrix_to_rotation_6d(axis_angle_to_matrix(axis_angle)) |
|
|
|
|
|
def rotation_6d_to_axis_angle(d6: torch.Tensor) -> torch.Tensor: |
|
return matrix_to_axis_angle(rotation_6d_to_matrix(d6)) |