|
import time |
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
def get_gaussian_kernel_1d(kernel_size, sigma, device): |
|
x = torch.arange(kernel_size).float() - (kernel_size // 2) |
|
g = torch.exp(-((x ** 2) / (2 * sigma ** 2))) |
|
g /= g.sum() |
|
|
|
kernel_weight = g.view(1, 1, -1).to(device) |
|
|
|
|
|
return kernel_weight |
|
|
|
def gaussian_filter_1d(data, kernel_size=3, sigma=1.0, weight=None): |
|
kernel_weight = get_gaussian_kernel_1d(kernel_size, sigma, data.device) if weight is None else weight |
|
data = F.pad(data, (kernel_size // 2, kernel_size // 2), mode='replicate') |
|
return F.conv1d(data, kernel_weight) |
|
|
|
|
|
def exponential_smoothing(x, d_x, alpha=0.5): |
|
return d_x + alpha * (x - d_x) |
|
|
|
|
|
class OneEuroFilter: |
|
|
|
|
|
|
|
def __init__(self, min_cutoff=1.0, beta=0.0, sampling_rate=30, d_cutoff=1.0, device='cuda'): |
|
self.min_cutoff = min_cutoff |
|
self.beta = beta |
|
self.sampling_rate = sampling_rate |
|
self.x_prev = None |
|
self.dx_prev = None |
|
self.d_cutoff = d_cutoff |
|
self.pi = torch.tensor(torch.pi, device=device) |
|
|
|
def smoothing_factor(self, cutoff): |
|
|
|
r = 2 * self.pi * cutoff / self.sampling_rate |
|
return r/ (1 + r) |
|
|
|
def filter(self, x): |
|
if self.x_prev is None: |
|
self.x_prev = x |
|
self.dx_prev = torch.zeros_like(x) |
|
return x |
|
|
|
|
|
a_d = self.smoothing_factor(self.d_cutoff) |
|
|
|
dx = (x - self.x_prev) * self.sampling_rate |
|
|
|
dx_hat = exponential_smoothing(dx, self.dx_prev, a_d) |
|
|
|
cutoff = self.min_cutoff + self.beta * torch.abs(dx_hat) |
|
a = self.smoothing_factor(cutoff) |
|
|
|
x_hat = exponential_smoothing(x, self.x_prev, a) |
|
|
|
self.x_prev = x_hat |
|
self.dx_prev = dx_hat |
|
|
|
return x_hat |
|
|
|
|
|
class Filter(): |
|
filter_factory = { |
|
'gaussian': get_gaussian_kernel_1d, |
|
} |
|
|
|
def __init__(self, target_data, filter_type, filter_args): |
|
self.target_data = target_data |
|
self.filter = self.filter_factory[filter_type] |
|
self.filter_args = filter_args |
|
|
|
def process(self, network_outputs): |
|
filter_data = [] |
|
for human in network_outputs: |
|
filter_data.append(human[self.target_data]) |
|
filter_data = torch.stack(filter_data, dim=0) |
|
|
|
filter_data = self.filter(filter_data, **self.filter_args) |
|
|
|
for i, human in enumerate(network_outputs): |
|
human[self.target_data] = filter_data[i] |
|
|
|
|
|
if __name__ == '__main__': |
|
import argparse |
|
import matplotlib.pyplot as plt |
|
import numpy as np |
|
from rot6d import rotation_6d_to_axis_angle, axis_angle_to_rotation_6d |
|
|
|
from humans import get_smplx_joint_names |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--data_path', type=str) |
|
parser.add_argument('--save_path', type=str) |
|
parser.add_argument('--name', type=str) |
|
args = parser.parse_args() |
|
|
|
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10, 8)) |
|
data_types = ['rotvec'] |
|
observe_keypoints = ['pelvis', 'head', 'left_wrist', 'left_knee'] |
|
joint_names = get_smplx_joint_names() |
|
|
|
|
|
data = np.load(f'{args.data_path}/shape_{args.name}.npy') |
|
fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(10, 8)) |
|
for i in range(2): |
|
for j in range(2): |
|
x = data[:, i*4 + j*2] |
|
print(x.shape) |
|
axs[i, j].plot(x) |
|
|
|
axs[i, j].set_title(f'{4 * i + 2 * j}') |
|
axs[i, j].plot(np.load(f'{args.data_path}/dist_{args.name}.npy')) |
|
plt.tight_layout() |
|
plt.savefig(f'{args.save_path}/shape_{args.name}.jpg') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|