|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from PIL import Image, ImageOps |
|
import torch.nn.functional as F |
|
import cv2 |
|
import time |
|
|
|
IMG_NORM_MEAN = [0.485, 0.456, 0.406] |
|
IMG_NORM_STD = [0.229, 0.224, 0.225] |
|
|
|
|
|
def normalize_rgb_tensor(img, imgenet_normalization=True): |
|
img = img / 255. |
|
if imgenet_normalization: |
|
img = (img - torch.tensor(IMG_NORM_MEAN, device=img.device).view(1, 3, 1, 1)) / torch.tensor(IMG_NORM_STD, device=img.device).view(1, 3, 1, 1) |
|
return img |
|
|
|
def normalize_rgb(img, imagenet_normalization=True): |
|
""" |
|
Args: |
|
- img: np.array - (W,H,3) - np.uint8 - 0/255 |
|
Return: |
|
- img: np.array - (3,W,H) - np.float - -3/3 |
|
""" |
|
img = img.astype(np.float32) / 255. |
|
img = np.transpose(img, (2,0,1)) |
|
if imagenet_normalization: |
|
img = (img - np.asarray(IMG_NORM_MEAN).reshape(3,1,1)) / np.asarray(IMG_NORM_STD).reshape(3,1,1) |
|
img = img.astype(np.float32) |
|
return img |
|
|
|
def denormalize_rgb(img, imagenet_normalization=True): |
|
""" |
|
Args: |
|
- img: np.array - (3,W,H) - np.float - -3/3 |
|
Return: |
|
- img: np.array - (W,H,3) - np.uint8 - 0/255 |
|
""" |
|
if imagenet_normalization: |
|
img = (img * np.asarray(IMG_NORM_STD).reshape(3,1,1)) + np.asarray(IMG_NORM_MEAN).reshape(3,1,1) |
|
img = np.transpose(img, (1,2,0)) * 255. |
|
img = img.astype(np.uint8) |
|
return img |
|
|
|
def unpatch(data, patch_size=14, c=3, img_size=224): |
|
|
|
if len(data.shape) == 2: |
|
c=1 |
|
data = data[:,:,None].repeat([1,1,patch_size**2]) |
|
|
|
B,N,HWC = data.shape |
|
HW = patch_size**2 |
|
c = int(HWC / HW) |
|
h = w = int(N**.5) |
|
p = q = int(HW**.5) |
|
data = data.reshape([B,h,w,p,q,c]) |
|
data = torch.einsum('nhwpqc->nchpwq', data) |
|
return data.reshape([B,c,img_size,img_size]) |
|
|
|
def image_pad(img, img_size, device=torch.device('cuda')): |
|
img_pil = ImageOps.contain(img, (img_size, img_size)) |
|
img_pil_bis = ImageOps.pad(img_pil.copy(), size=(img_size,img_size), color=(255, 255, 255)) |
|
img_pil = ImageOps.pad(img_pil, size=(img_size,img_size)) |
|
|
|
|
|
resize_img = np.asarray(img_pil) |
|
|
|
|
|
resize_img = normalize_rgb(resize_img) |
|
|
|
x = torch.from_numpy(resize_img).unsqueeze(0).to(device) |
|
return x, img_pil_bis |
|
|
|
def image_pad_cuda(img, img_size, rot=0, device=torch.device('cuda'), vis=False): |
|
img = torch.Tensor(img).to(device) |
|
img = torch.flip(img, dims=[2]).unsqueeze(0).permute(0, 3, 1, 2) |
|
if rot != 0: |
|
img = torch.rot90(img, rot, [2, 3]) |
|
|
|
if vis: |
|
image = img.clone()[0].permute(1, 2, 0).cpu().numpy() |
|
if image.dtype != np.uint8: |
|
image = image.astype(np.uint8) |
|
cv2.imshow('k4a', image[..., ::-1]) |
|
cv2.waitKey(1) |
|
_, _, h, w = img.shape |
|
scale_factor = min(img_size / w, img_size / h) |
|
|
|
img = F.interpolate(img, scale_factor=scale_factor, mode='bilinear') |
|
|
|
_, _, h, w = img.shape |
|
|
|
pad_w = (img_size - w) // 2 |
|
pad_h = (img_size - h) // 2 |
|
|
|
|
|
img = F.pad(img,(pad_w, pad_w, pad_h, pad_h), mode='constant', value=255) |
|
|
|
|
|
resize_img = normalize_rgb_tensor(img) |
|
return resize_img, img |