|
|
|
|
|
|
|
|
|
import numpy as np |
|
import math |
|
import torch |
|
|
|
OPENCV_TO_OPENGL_CAMERA_CONVENTION = np.array([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) |
|
|
|
|
|
def perspective_projection(x, K): |
|
""" |
|
This function computes the perspective projection of a set of points assuming the extrinsinc params have already been applied |
|
Args: |
|
- x [bs,N,3]: 3D points |
|
- K [bs,3,3]: Camera instrincs params |
|
""" |
|
|
|
y = x / x[:, :, -1].unsqueeze(-1) |
|
|
|
|
|
y = torch.einsum("bij,bkj->bki", K, y) |
|
|
|
return y[:, :, :2] |
|
|
|
|
|
def inverse_perspective_projection(points, K, distance): |
|
""" |
|
This function computes the inverse perspective projection of a set of points given an estimated distance. |
|
Input: |
|
points (bs, N, 2): 2D points |
|
K (bs,3,3): camera intrinsics params |
|
distance (bs, N, 1): distance in the 3D world |
|
Similar to: |
|
- pts_l_norm = cv2.undistortPoints(np.expand_dims(pts_l, axis=1), cameraMatrix=K_l, distCoeffs=None) |
|
""" |
|
|
|
points = torch.cat([points, torch.ones_like(points[..., :1])], -1) |
|
points = torch.einsum("bij,bkj->bki", torch.inverse(K), points) |
|
|
|
|
|
if distance == None: |
|
return points |
|
points = points * distance |
|
return points |
|
|
|
|
|
def get_focalLength_from_fieldOfView(fov=60, img_size=512): |
|
""" |
|
Compute the focal length of the camera lens by assuming a certain FOV for the entire image |
|
Args: |
|
- fov: float, expressed in degree |
|
- img_size: int |
|
Return: |
|
focal: float |
|
""" |
|
focal = img_size / (2 * np.tan(np.radians(fov) / 2)) |
|
return focal |
|
|
|
|
|
def focal_length_normalization(x, f, fovn=60, img_size=448): |
|
""" |
|
Section 3.1 of https://arxiv.org/pdf/1904.02028.pdf |
|
E = (fn/f) * E' where E is 1/d |
|
""" |
|
fn = get_focalLength_from_fieldOfView(fov=fovn, img_size=img_size) |
|
y = x * (fn / f) |
|
return y |
|
|
|
|
|
def undo_focal_length_normalization(y, f, fovn=60, img_size=448): |
|
""" |
|
Undo focal_length_normalization() |
|
""" |
|
fn = get_focalLength_from_fieldOfView(fov=fovn, img_size=img_size) |
|
x = y * (f / fn) |
|
return x |
|
|
|
|
|
EPS_LOG = 1e-10 |
|
|
|
|
|
def log_depth(x, eps=EPS_LOG): |
|
""" |
|
Move depth to log space |
|
""" |
|
return torch.log(x + eps) |
|
|
|
|
|
def undo_log_depth(y, eps=EPS_LOG): |
|
""" |
|
Undo log_depth() |
|
""" |
|
return torch.exp(y) - eps |
|
|