LHM / engine /BiRefNet /train.sh
QZFantasies's picture
add wheels
c614b0f
#!/bin/bash
# Run script
# Settings of training & test for different tasks.
method="$1"
task=$(python3 config.py --print_task)
case "${task}" in
'DIS5K') epochs=200 && val_last=50 && step=5 ;;
'COD') epochs=150 && val_last=50 && step=5 ;;
'HRSOD') epochs=150 && val_last=50 && step=5 ;;
'General') epochs=250 && val_last=50 && step=2 ;;
'General-2K') epochs=250 && val_last=30 && step=2 ;;
'Matting') epochs=100 && val_last=30 && step=2 ;;
esac
testsets=NO # Non-existing folder to skip.
# testsets=TE-COD10K # for COD
# Train
devices=$2
nproc_per_node=$(echo ${devices%%,} | grep -o "," | wc -l)
to_be_distributed=`echo ${nproc_per_node} | awk '{if($e > 0) print "True"; else print "False";}'`
echo Training started at $(date)
if [ ${to_be_distributed} == "True" ]
then
# Adapt the nproc_per_node by the number of GPUs. Give 8989 as the default value of master_port.
echo "Multi-GPU mode received..."
CUDA_VISIBLE_DEVICES=${devices} \
torchrun --standalone --nproc_per_node $((nproc_per_node+1)) \
train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
--testsets ${testsets} \
--dist ${to_be_distributed} \
--resume xx/xx-epoch_244.pth \
# --use_accelerate
else
echo "Single-GPU mode received..."
CUDA_VISIBLE_DEVICES=${devices} \
python train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
--testsets ${testsets} \
--dist ${to_be_distributed} \
--resume xx/xx-epoch_244.pth
# --use_accelerate
fi
echo Training finished at $(date)