LHM / engine /BiRefNet /train.py
QZFantasies's picture
add wheels
c614b0f
import os
import datetime
import argparse
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from config import Config
from loss import PixLoss, ClsLoss
from dataset import MyData
from models.birefnet import BiRefNet, BiRefNetC2F
from utils import Logger, AverageMeter, set_seed, check_state_dict
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.distributed import init_process_group, destroy_process_group
parser = argparse.ArgumentParser(description='')
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
parser.add_argument('--epochs', default=120, type=int)
parser.add_argument('--ckpt_dir', default='ckpt/tmp', help='Temporary folder')
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
parser.add_argument('--use_accelerate', action='store_true', help='`accelerate launch --multi_gpu train.py --use_accelerate`. Use accelerate for training, good for FP16/BF16/...')
args = parser.parse_args()
if args.use_accelerate:
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision=['no', 'fp16', 'bf16', 'fp8'][1],
gradient_accumulation_steps=1,
)
args.dist = False
config = Config()
if config.rand_seed:
set_seed(config.rand_seed)
# DDP
to_be_distributed = args.dist
if to_be_distributed:
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
device = int(os.environ["LOCAL_RANK"])
else:
device = config.device
epoch_st = 1
# make dir for ckpt
os.makedirs(args.ckpt_dir, exist_ok=True)
# Init log file
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
logger_loss_idx = 1
# log model and optimizer params
# logger.info("Model details:"); logger.info(model)
if args.use_accelerate and accelerator.mixed_precision != 'no':
config.compile = False
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
logger.info("Other hyperparameters:"); logger.info(args)
print('batch size:', config.batch_size)
if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])):
args.testsets = args.testsets.strip('+').split('+')
else:
args.testsets = []
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
# Prepare dataloaders
if to_be_distributed:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
)
else:
return torch.utils.data.DataLoader(
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True,
shuffle=is_train, drop_last=True
)
def init_data_loaders(to_be_distributed):
# Prepare datasets
train_loader = prepare_dataloader(
MyData(datasets=config.training_set, image_size=config.size, is_train=True),
config.batch_size, to_be_distributed=to_be_distributed, is_train=True
)
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
test_loaders = {}
for testset in args.testsets:
_data_loader_test = prepare_dataloader(
MyData(datasets=testset, image_size=config.size, is_train=False),
config.batch_size_valid, is_train=False
)
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
test_loaders[testset] = _data_loader_test
return train_loader, test_loaders
def init_models_optimizers(epochs, to_be_distributed):
# Init models
if config.model == 'BiRefNet':
model = BiRefNet(bb_pretrained=True and not os.path.isfile(str(args.resume)))
elif config.model == 'BiRefNetC2F':
model = BiRefNetC2F(bb_pretrained=True and not os.path.isfile(str(args.resume)))
if args.resume:
if os.path.isfile(args.resume):
logger.info("=> loading checkpoint '{}'".format(args.resume))
state_dict = torch.load(args.resume, map_location='cpu', weights_only=True)
state_dict = check_state_dict(state_dict)
model.load_state_dict(state_dict)
global epoch_st
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
else:
logger.info("=> no checkpoint found at '{}'".format(args.resume))
if not args.use_accelerate:
if to_be_distributed:
model = model.to(device)
model = DDP(model, device_ids=[device])
else:
model = model.to(device)
if config.compile:
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
if config.precisionHigh:
torch.set_float32_matmul_precision('high')
# Setting optimizer
if config.optimizer == 'AdamW':
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
elif config.optimizer == 'Adam':
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer,
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
gamma=config.lr_decay_rate
)
logger.info("Optimizer details:"); logger.info(optimizer)
logger.info("Scheduler details:"); logger.info(lr_scheduler)
return model, optimizer, lr_scheduler
class Trainer:
def __init__(
self, data_loaders, model_opt_lrsch,
):
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
self.train_loader, self.test_loaders = data_loaders
if args.use_accelerate:
self.train_loader, self.model, self.optimizer = accelerator.prepare(self.train_loader, self.model, self.optimizer)
for testset in self.test_loaders.keys():
self.test_loaders[testset] = accelerator.prepare(self.test_loaders[testset])
if config.out_ref:
self.criterion_gdt = nn.BCELoss()
# Setting Losses
self.pix_loss = PixLoss()
self.cls_loss = ClsLoss()
# Others
self.loss_log = AverageMeter()
def _train_batch(self, batch):
if args.use_accelerate:
inputs = batch[0]#.to(device)
gts = batch[1]#.to(device)
class_labels = batch[2]#.to(device)
else:
inputs = batch[0].to(device)
gts = batch[1].to(device)
class_labels = batch[2].to(device)
scaled_preds, class_preds_lst = self.model(inputs)
if config.out_ref:
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
_gdt_label = _gdt_label.sigmoid()
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
# self.loss_dict['loss_gdt'] = loss_gdt.item()
if None in class_preds_lst:
loss_cls = 0.
else:
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
self.loss_dict['loss_cls'] = loss_cls.item()
# Loss
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
self.loss_dict['loss_pix'] = loss_pix.item()
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
loss = loss_pix + loss_cls
if config.out_ref:
loss = loss + loss_gdt * 1.0
self.loss_log.update(loss.item(), inputs.size(0))
self.optimizer.zero_grad()
if args.use_accelerate:
accelerator.backward(loss)
else:
loss.backward()
self.optimizer.step()
def train_epoch(self, epoch):
global logger_loss_idx
self.model.train()
self.loss_dict = {}
if epoch > args.epochs + config.finetune_last_epochs:
if config.task == 'Matting':
self.pix_loss.lambdas_pix_last['mae'] *= 1
self.pix_loss.lambdas_pix_last['mse'] *= 0.9
self.pix_loss.lambdas_pix_last['ssim'] *= 0.9
else:
self.pix_loss.lambdas_pix_last['bce'] *= 0
self.pix_loss.lambdas_pix_last['ssim'] *= 1
self.pix_loss.lambdas_pix_last['iou'] *= 0.5
self.pix_loss.lambdas_pix_last['mae'] *= 0.9
for batch_idx, batch in enumerate(self.train_loader):
self._train_batch(batch)
# Logger
if batch_idx % 20 == 0:
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
info_loss = 'Training Losses'
for loss_name, loss_value in self.loss_dict.items():
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
logger.info(' '.join((info_progress, info_loss)))
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
logger.info(info_loss)
self.lr_scheduler.step()
return self.loss_log.avg
def main():
trainer = Trainer(
data_loaders=init_data_loaders(to_be_distributed),
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
)
for epoch in range(epoch_st, args.epochs+1):
train_loss = trainer.train_epoch(epoch)
# Save checkpoint
# DDP
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
torch.save(
trainer.model.module.state_dict() if to_be_distributed or args.use_accelerate else trainer.model.state_dict(),
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
)
if to_be_distributed:
destroy_process_group()
if __name__ == '__main__':
main()