|
import torch.nn as nn |
|
|
|
from engine.BiRefNet.models.modules.utils import build_act_layer, build_norm_layer |
|
|
|
|
|
class StemLayer(nn.Module): |
|
r"""Stem layer of InternImage |
|
Args: |
|
in_channels (int): number of input channels |
|
out_channels (int): number of output channels |
|
act_layer (str): activation layer |
|
norm_layer (str): normalization layer |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels=3 + 1, |
|
inter_channels=48, |
|
out_channels=96, |
|
act_layer="GELU", |
|
norm_layer="BN", |
|
): |
|
super().__init__() |
|
self.conv1 = nn.Conv2d( |
|
in_channels, inter_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.norm1 = build_norm_layer( |
|
inter_channels, norm_layer, "channels_first", "channels_first" |
|
) |
|
self.act = build_act_layer(act_layer) |
|
self.conv2 = nn.Conv2d( |
|
inter_channels, out_channels, kernel_size=3, stride=1, padding=1 |
|
) |
|
self.norm2 = build_norm_layer( |
|
out_channels, norm_layer, "channels_first", "channels_first" |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
x = self.norm1(x) |
|
x = self.act(x) |
|
x = self.conv2(x) |
|
x = self.norm2(x) |
|
return x |
|
|