QZFantasies's picture
add wheels
c614b0f
import torch
import torch.nn as nn
import torch.nn.functional as F
from engine.BiRefNet.config import Config
from engine.BiRefNet.models.modules.deform_conv import DeformableConv2d
config = Config()
class _ASPPModule(nn.Module):
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
super(_ASPPModule, self).__init__()
self.atrous_conv = nn.Conv2d(
in_channels,
planes,
kernel_size=kernel_size,
stride=1,
padding=padding,
dilation=dilation,
bias=False,
)
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)
return self.relu(x)
class ASPP(nn.Module):
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
super(ASPP, self).__init__()
self.down_scale = 1
if out_channels is None:
out_channels = in_channels
self.in_channelster = 256 // self.down_scale
if output_stride == 16:
dilations = [1, 6, 12, 18]
elif output_stride == 8:
dilations = [1, 12, 24, 36]
else:
raise NotImplementedError
self.aspp1 = _ASPPModule(
in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0]
)
self.aspp2 = _ASPPModule(
in_channels,
self.in_channelster,
3,
padding=dilations[1],
dilation=dilations[1],
)
self.aspp3 = _ASPPModule(
in_channels,
self.in_channelster,
3,
padding=dilations[2],
dilation=dilations[2],
)
self.aspp4 = _ASPPModule(
in_channels,
self.in_channelster,
3,
padding=dilations[3],
dilation=dilations[3],
)
self.global_avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
(
nn.BatchNorm2d(self.in_channelster)
if config.batch_size > 1
else nn.Identity()
),
nn.ReLU(inplace=True),
)
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
self.bn1 = (
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x1 = self.aspp1(x)
x2 = self.aspp2(x)
x3 = self.aspp3(x)
x4 = self.aspp4(x)
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return self.dropout(x)
##################### Deformable
class _ASPPModuleDeformable(nn.Module):
def __init__(self, in_channels, planes, kernel_size, padding):
super(_ASPPModuleDeformable, self).__init__()
self.atrous_conv = DeformableConv2d(
in_channels,
planes,
kernel_size=kernel_size,
stride=1,
padding=padding,
bias=False,
)
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.atrous_conv(x)
x = self.bn(x)
return self.relu(x)
class ASPPDeformable(nn.Module):
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
super(ASPPDeformable, self).__init__()
self.down_scale = 1
if out_channels is None:
out_channels = in_channels
self.in_channelster = 256 // self.down_scale
self.aspp1 = _ASPPModuleDeformable(
in_channels, self.in_channelster, 1, padding=0
)
self.aspp_deforms = nn.ModuleList(
[
_ASPPModuleDeformable(
in_channels,
self.in_channelster,
conv_size,
padding=int(conv_size // 2),
)
for conv_size in parallel_block_sizes
]
)
self.global_avg_pool = nn.Sequential(
nn.AdaptiveAvgPool2d((1, 1)),
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
(
nn.BatchNorm2d(self.in_channelster)
if config.batch_size > 1
else nn.Identity()
),
nn.ReLU(inplace=True),
)
self.conv1 = nn.Conv2d(
self.in_channelster * (2 + len(self.aspp_deforms)),
out_channels,
1,
bias=False,
)
self.bn1 = (
nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
)
self.relu = nn.ReLU(inplace=True)
self.dropout = nn.Dropout(0.5)
def forward(self, x):
x1 = self.aspp1(x)
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
x5 = self.global_avg_pool(x)
x5 = F.interpolate(x5, size=x1.size()[2:], mode="bilinear", align_corners=True)
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
return self.dropout(x)