|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from huggingface_hub import PyTorchModelHubMixin |
|
from kornia.filters import laplacian |
|
|
|
from engine.BiRefNet.config import Config |
|
from engine.BiRefNet.dataset import class_labels_TR_sorted |
|
|
|
from .backbones.build_backbone import build_backbone |
|
from .modules.aspp import ASPP, ASPPDeformable |
|
from .modules.decoder_blocks import BasicDecBlk, ResBlk |
|
from .modules.lateral_blocks import BasicLatBlk |
|
from .refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet |
|
from .refinement.stem_layer import StemLayer |
|
|
|
|
|
def image2patches( |
|
image, |
|
grid_h=2, |
|
grid_w=2, |
|
patch_ref=None, |
|
transformation="b c (hg h) (wg w) -> (b hg wg) c h w", |
|
): |
|
if patch_ref is not None: |
|
grid_h, grid_w = ( |
|
image.shape[-2] // patch_ref.shape[-2], |
|
image.shape[-1] // patch_ref.shape[-1], |
|
) |
|
patches = rearrange(image, transformation, hg=grid_h, wg=grid_w) |
|
return patches |
|
|
|
|
|
def patches2image( |
|
patches, |
|
grid_h=2, |
|
grid_w=2, |
|
patch_ref=None, |
|
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", |
|
): |
|
if patch_ref is not None: |
|
grid_h, grid_w = ( |
|
patch_ref.shape[-2] // patches[0].shape[-2], |
|
patch_ref.shape[-1] // patches[0].shape[-1], |
|
) |
|
image = rearrange(patches, transformation, hg=grid_h, wg=grid_w) |
|
return image |
|
|
|
|
|
class BiRefNet( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
library_name="birefnet", |
|
repo_url="https://github.com/ZhengPeng7/BiRefNet", |
|
tags=[ |
|
"Image Segmentation", |
|
"Background Removal", |
|
"Mask Generation", |
|
"Dichotomous Image Segmentation", |
|
"Camouflaged Object Detection", |
|
"Salient Object Detection", |
|
], |
|
): |
|
def __init__(self, bb_pretrained=True): |
|
super(BiRefNet, self).__init__() |
|
self.config = Config() |
|
self.epoch = 1 |
|
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained) |
|
|
|
channels = self.config.lateral_channels_in_collection |
|
|
|
if self.config.auxiliary_classification: |
|
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) |
|
self.cls_head = nn.Sequential( |
|
nn.Linear(channels[0], len(class_labels_TR_sorted)) |
|
) |
|
|
|
if self.config.squeeze_block: |
|
self.squeeze_module = nn.Sequential( |
|
*[ |
|
eval(self.config.squeeze_block.split("_x")[0])( |
|
channels[0] + sum(self.config.cxt), channels[0] |
|
) |
|
for _ in range(eval(self.config.squeeze_block.split("_x")[1])) |
|
] |
|
) |
|
|
|
self.decoder = Decoder(channels) |
|
|
|
if self.config.ender: |
|
self.dec_end = nn.Sequential( |
|
nn.Conv2d(1, 16, 3, 1, 1), |
|
nn.Conv2d(16, 1, 3, 1, 1), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
|
|
if self.config.refine: |
|
if self.config.refine == "itself": |
|
self.stem_layer = StemLayer( |
|
in_channels=3 + 1, |
|
inter_channels=48, |
|
out_channels=3, |
|
norm_layer="BN" if self.config.batch_size > 1 else "LN", |
|
) |
|
else: |
|
self.refiner = eval( |
|
"{}({})".format(self.config.refine, "in_channels=3+1") |
|
) |
|
|
|
if self.config.freeze_bb: |
|
|
|
print(self.named_parameters()) |
|
for key, value in self.named_parameters(): |
|
if "bb." in key and "refiner." not in key: |
|
value.requires_grad = False |
|
|
|
def forward_enc(self, x): |
|
if self.config.bb in ["vgg16", "vgg16bn", "resnet50"]: |
|
x1 = self.bb.conv1(x) |
|
x2 = self.bb.conv2(x1) |
|
x3 = self.bb.conv3(x2) |
|
x4 = self.bb.conv4(x3) |
|
else: |
|
x1, x2, x3, x4 = self.bb(x) |
|
if self.config.mul_scl_ipt == "cat": |
|
B, C, H, W = x.shape |
|
x1_, x2_, x3_, x4_ = self.bb( |
|
F.interpolate( |
|
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True |
|
) |
|
) |
|
x1 = torch.cat( |
|
[ |
|
x1, |
|
F.interpolate( |
|
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
], |
|
dim=1, |
|
) |
|
x2 = torch.cat( |
|
[ |
|
x2, |
|
F.interpolate( |
|
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
], |
|
dim=1, |
|
) |
|
x3 = torch.cat( |
|
[ |
|
x3, |
|
F.interpolate( |
|
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
], |
|
dim=1, |
|
) |
|
x4 = torch.cat( |
|
[ |
|
x4, |
|
F.interpolate( |
|
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
], |
|
dim=1, |
|
) |
|
elif self.config.mul_scl_ipt == "add": |
|
B, C, H, W = x.shape |
|
x1_, x2_, x3_, x4_ = self.bb( |
|
F.interpolate( |
|
x, size=(H // 2, W // 2), mode="bilinear", align_corners=True |
|
) |
|
) |
|
x1 = x1 + F.interpolate( |
|
x1_, size=x1.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
x2 = x2 + F.interpolate( |
|
x2_, size=x2.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
x3 = x3 + F.interpolate( |
|
x3_, size=x3.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
x4 = x4 + F.interpolate( |
|
x4_, size=x4.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
class_preds = ( |
|
self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) |
|
if self.training and self.config.auxiliary_classification |
|
else None |
|
) |
|
if self.config.cxt: |
|
x4 = torch.cat( |
|
( |
|
*[ |
|
F.interpolate( |
|
x1, size=x4.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
F.interpolate( |
|
x2, size=x4.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
F.interpolate( |
|
x3, size=x4.shape[2:], mode="bilinear", align_corners=True |
|
), |
|
][-len(self.config.cxt) :], |
|
x4, |
|
), |
|
dim=1, |
|
) |
|
return (x1, x2, x3, x4), class_preds |
|
|
|
def forward_ori(self, x): |
|
|
|
(x1, x2, x3, x4), class_preds = self.forward_enc(x) |
|
if self.config.squeeze_block: |
|
x4 = self.squeeze_module(x4) |
|
|
|
features = [x, x1, x2, x3, x4] |
|
if self.training and self.config.out_ref: |
|
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5)) |
|
scaled_preds = self.decoder(features) |
|
return scaled_preds, class_preds |
|
|
|
def forward(self, x): |
|
scaled_preds, class_preds = self.forward_ori(x) |
|
class_preds_lst = [class_preds] |
|
return [scaled_preds, class_preds_lst] if self.training else scaled_preds |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, channels): |
|
super(Decoder, self).__init__() |
|
self.config = Config() |
|
DecoderBlock = eval(self.config.dec_blk) |
|
LateralBlock = eval(self.config.lat_blk) |
|
|
|
if self.config.dec_ipt: |
|
self.split = self.config.dec_ipt_split |
|
N_dec_ipt = 64 |
|
DBlock = SimpleConvs |
|
ic = 64 |
|
ipt_cha_opt = 1 |
|
self.ipt_blk5 = DBlock( |
|
2**10 * 3 if self.split else 3, |
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt], |
|
inter_channels=ic, |
|
) |
|
self.ipt_blk4 = DBlock( |
|
2**8 * 3 if self.split else 3, |
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt], |
|
inter_channels=ic, |
|
) |
|
self.ipt_blk3 = DBlock( |
|
2**6 * 3 if self.split else 3, |
|
[N_dec_ipt, channels[1] // 8][ipt_cha_opt], |
|
inter_channels=ic, |
|
) |
|
self.ipt_blk2 = DBlock( |
|
2**4 * 3 if self.split else 3, |
|
[N_dec_ipt, channels[2] // 8][ipt_cha_opt], |
|
inter_channels=ic, |
|
) |
|
self.ipt_blk1 = DBlock( |
|
2**0 * 3 if self.split else 3, |
|
[N_dec_ipt, channels[3] // 8][ipt_cha_opt], |
|
inter_channels=ic, |
|
) |
|
else: |
|
self.split = None |
|
|
|
self.decoder_block4 = DecoderBlock( |
|
channels[0] |
|
+ ( |
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 |
|
), |
|
channels[1], |
|
) |
|
self.decoder_block3 = DecoderBlock( |
|
channels[1] |
|
+ ( |
|
[N_dec_ipt, channels[0] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 |
|
), |
|
channels[2], |
|
) |
|
self.decoder_block2 = DecoderBlock( |
|
channels[2] |
|
+ ( |
|
[N_dec_ipt, channels[1] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 |
|
), |
|
channels[3], |
|
) |
|
self.decoder_block1 = DecoderBlock( |
|
channels[3] |
|
+ ( |
|
[N_dec_ipt, channels[2] // 8][ipt_cha_opt] if self.config.dec_ipt else 0 |
|
), |
|
channels[3] // 2, |
|
) |
|
self.conv_out1 = nn.Sequential( |
|
nn.Conv2d( |
|
channels[3] // 2 |
|
+ ( |
|
[N_dec_ipt, channels[3] // 8][ipt_cha_opt] |
|
if self.config.dec_ipt |
|
else 0 |
|
), |
|
1, |
|
1, |
|
1, |
|
0, |
|
) |
|
) |
|
|
|
self.lateral_block4 = LateralBlock(channels[1], channels[1]) |
|
self.lateral_block3 = LateralBlock(channels[2], channels[2]) |
|
self.lateral_block2 = LateralBlock(channels[3], channels[3]) |
|
|
|
if self.config.ms_supervision: |
|
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0) |
|
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0) |
|
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0) |
|
|
|
if self.config.out_ref: |
|
_N = 16 |
|
self.gdt_convs_4 = nn.Sequential( |
|
nn.Conv2d(channels[1], _N, 3, 1, 1), |
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), |
|
nn.ReLU(inplace=True), |
|
) |
|
self.gdt_convs_3 = nn.Sequential( |
|
nn.Conv2d(channels[2], _N, 3, 1, 1), |
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), |
|
nn.ReLU(inplace=True), |
|
) |
|
self.gdt_convs_2 = nn.Sequential( |
|
nn.Conv2d(channels[3], _N, 3, 1, 1), |
|
nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
|
|
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0)) |
|
|
|
def forward(self, features): |
|
if self.training and self.config.out_ref: |
|
outs_gdt_pred = [] |
|
outs_gdt_label = [] |
|
x, x1, x2, x3, x4, gdt_gt = features |
|
else: |
|
x, x1, x2, x3, x4 = features |
|
outs = [] |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = ( |
|
image2patches( |
|
x, |
|
patch_ref=x4, |
|
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", |
|
) |
|
if self.split |
|
else x |
|
) |
|
x4 = torch.cat( |
|
( |
|
x4, |
|
self.ipt_blk5( |
|
F.interpolate( |
|
patches_batch, |
|
size=x4.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
), |
|
), |
|
1, |
|
) |
|
p4 = self.decoder_block4(x4) |
|
m4 = ( |
|
self.conv_ms_spvn_4(p4) |
|
if self.config.ms_supervision and self.training |
|
else None |
|
) |
|
if self.config.out_ref: |
|
p4_gdt = self.gdt_convs_4(p4) |
|
if self.training: |
|
|
|
m4_dia = m4 |
|
gdt_label_main_4 = gdt_gt * F.interpolate( |
|
m4_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
outs_gdt_label.append(gdt_label_main_4) |
|
|
|
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt) |
|
outs_gdt_pred.append(gdt_pred_4) |
|
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid() |
|
|
|
p4 = p4 * gdt_attn_4 |
|
_p4 = F.interpolate(p4, size=x3.shape[2:], mode="bilinear", align_corners=True) |
|
_p3 = _p4 + self.lateral_block4(x3) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = ( |
|
image2patches( |
|
x, |
|
patch_ref=_p3, |
|
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", |
|
) |
|
if self.split |
|
else x |
|
) |
|
_p3 = torch.cat( |
|
( |
|
_p3, |
|
self.ipt_blk4( |
|
F.interpolate( |
|
patches_batch, |
|
size=x3.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
), |
|
), |
|
1, |
|
) |
|
p3 = self.decoder_block3(_p3) |
|
m3 = ( |
|
self.conv_ms_spvn_3(p3) |
|
if self.config.ms_supervision and self.training |
|
else None |
|
) |
|
if self.config.out_ref: |
|
p3_gdt = self.gdt_convs_3(p3) |
|
if self.training: |
|
|
|
|
|
|
|
m3_dia = m3 |
|
gdt_label_main_3 = gdt_gt * F.interpolate( |
|
m3_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
outs_gdt_label.append(gdt_label_main_3) |
|
|
|
|
|
|
|
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt) |
|
outs_gdt_pred.append(gdt_pred_3) |
|
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid() |
|
|
|
|
|
p3 = p3 * gdt_attn_3 |
|
_p3 = F.interpolate(p3, size=x2.shape[2:], mode="bilinear", align_corners=True) |
|
_p2 = _p3 + self.lateral_block3(x2) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = ( |
|
image2patches( |
|
x, |
|
patch_ref=_p2, |
|
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", |
|
) |
|
if self.split |
|
else x |
|
) |
|
_p2 = torch.cat( |
|
( |
|
_p2, |
|
self.ipt_blk3( |
|
F.interpolate( |
|
patches_batch, |
|
size=x2.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
), |
|
), |
|
1, |
|
) |
|
p2 = self.decoder_block2(_p2) |
|
m2 = ( |
|
self.conv_ms_spvn_2(p2) |
|
if self.config.ms_supervision and self.training |
|
else None |
|
) |
|
if self.config.out_ref: |
|
p2_gdt = self.gdt_convs_2(p2) |
|
if self.training: |
|
|
|
m2_dia = m2 |
|
gdt_label_main_2 = gdt_gt * F.interpolate( |
|
m2_dia, size=gdt_gt.shape[2:], mode="bilinear", align_corners=True |
|
) |
|
outs_gdt_label.append(gdt_label_main_2) |
|
|
|
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt) |
|
outs_gdt_pred.append(gdt_pred_2) |
|
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid() |
|
|
|
p2 = p2 * gdt_attn_2 |
|
_p2 = F.interpolate(p2, size=x1.shape[2:], mode="bilinear", align_corners=True) |
|
_p1 = _p2 + self.lateral_block2(x1) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = ( |
|
image2patches( |
|
x, |
|
patch_ref=_p1, |
|
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", |
|
) |
|
if self.split |
|
else x |
|
) |
|
_p1 = torch.cat( |
|
( |
|
_p1, |
|
self.ipt_blk2( |
|
F.interpolate( |
|
patches_batch, |
|
size=x1.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
), |
|
), |
|
1, |
|
) |
|
_p1 = self.decoder_block1(_p1) |
|
_p1 = F.interpolate(_p1, size=x.shape[2:], mode="bilinear", align_corners=True) |
|
|
|
if self.config.dec_ipt: |
|
patches_batch = ( |
|
image2patches( |
|
x, |
|
patch_ref=_p1, |
|
transformation="b c (hg h) (wg w) -> b (c hg wg) h w", |
|
) |
|
if self.split |
|
else x |
|
) |
|
_p1 = torch.cat( |
|
( |
|
_p1, |
|
self.ipt_blk1( |
|
F.interpolate( |
|
patches_batch, |
|
size=x.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
), |
|
), |
|
1, |
|
) |
|
p1_out = self.conv_out1(_p1) |
|
|
|
if self.config.ms_supervision and self.training: |
|
outs.append(m4) |
|
outs.append(m3) |
|
outs.append(m2) |
|
outs.append(p1_out) |
|
return ( |
|
outs |
|
if not (self.config.out_ref and self.training) |
|
else ([outs_gdt_pred, outs_gdt_label], outs) |
|
) |
|
|
|
|
|
class SimpleConvs(nn.Module): |
|
def __init__(self, in_channels: int, out_channels: int, inter_channels=64) -> None: |
|
super().__init__() |
|
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1) |
|
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1) |
|
|
|
def forward(self, x): |
|
return self.conv_out(self.conv1(x)) |
|
|
|
|
|
|
|
|
|
|
|
class BiRefNetC2F( |
|
nn.Module, |
|
PyTorchModelHubMixin, |
|
library_name="birefnet_c2f", |
|
repo_url="https://github.com/ZhengPeng7/BiRefNet_C2F", |
|
tags=[ |
|
"Image Segmentation", |
|
"Background Removal", |
|
"Mask Generation", |
|
"Dichotomous Image Segmentation", |
|
"Camouflaged Object Detection", |
|
"Salient Object Detection", |
|
], |
|
): |
|
def __init__(self, bb_pretrained=True): |
|
super(BiRefNetC2F, self).__init__() |
|
self.config = Config() |
|
self.epoch = 1 |
|
self.grid = 4 |
|
self.model_coarse = BiRefNet(bb_pretrained=True) |
|
self.model_fine = BiRefNet(bb_pretrained=True) |
|
self.input_mixer = nn.Conv2d(4, 3, 1, 1, 0) |
|
self.output_mixer_merge_post = nn.Sequential( |
|
nn.Conv2d(1, 16, 3, 1, 1), nn.Conv2d(16, 1, 3, 1, 1) |
|
) |
|
|
|
def forward(self, x): |
|
x_ori = x.clone() |
|
|
|
x = F.interpolate( |
|
x, |
|
size=[s // self.grid for s in self.config.size[::-1]], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
|
|
if self.training: |
|
scaled_preds, class_preds_lst = self.model_coarse(x) |
|
else: |
|
scaled_preds = self.model_coarse(x) |
|
|
|
x_HR_patches = image2patches( |
|
x_ori, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" |
|
) |
|
pred = F.interpolate( |
|
( |
|
scaled_preds[-1] |
|
if not (self.config.out_ref and self.training) |
|
else scaled_preds[1][-1] |
|
), |
|
size=x_ori.shape[2:], |
|
mode="bilinear", |
|
align_corners=True, |
|
) |
|
pred_patches = image2patches( |
|
pred, patch_ref=x, transformation="b c (hg h) (wg w) -> (b hg wg) c h w" |
|
) |
|
t = torch.cat([x_HR_patches, pred_patches], dim=1) |
|
x_HR = self.input_mixer(t) |
|
|
|
pred_patches = image2patches( |
|
pred, patch_ref=x_HR, transformation="b c (hg h) (wg w) -> b (c hg wg) h w" |
|
) |
|
if self.training: |
|
scaled_preds_HR, class_preds_lst_HR = self.model_fine(x_HR) |
|
else: |
|
scaled_preds_HR = self.model_fine(x_HR) |
|
if self.training: |
|
if self.config.out_ref: |
|
[outs_gdt_pred, outs_gdt_label], outs = scaled_preds |
|
[outs_gdt_pred_HR, outs_gdt_label_HR], outs_HR = scaled_preds_HR |
|
for idx_out, out_HR in enumerate(outs_HR): |
|
outs_HR[idx_out] = self.output_mixer_merge_post( |
|
patches2image( |
|
out_HR, |
|
grid_h=self.grid, |
|
grid_w=self.grid, |
|
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", |
|
) |
|
) |
|
return [ |
|
( |
|
[ |
|
outs_gdt_pred + outs_gdt_pred_HR, |
|
outs_gdt_label + outs_gdt_label_HR, |
|
], |
|
outs + outs_HR, |
|
), |
|
class_preds_lst, |
|
] |
|
else: |
|
return [ |
|
scaled_preds |
|
+ [ |
|
self.output_mixer_merge_post( |
|
patches2image( |
|
scaled_pred_HR, |
|
grid_h=self.grid, |
|
grid_w=self.grid, |
|
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", |
|
) |
|
) |
|
for scaled_pred_HR in scaled_preds_HR |
|
], |
|
class_preds_lst, |
|
] |
|
else: |
|
return scaled_preds + [ |
|
self.output_mixer_merge_post( |
|
patches2image( |
|
scaled_pred_HR, |
|
grid_h=self.grid, |
|
grid_w=self.grid, |
|
transformation="(b hg wg) c h w -> b c (hg h) (wg w)", |
|
) |
|
) |
|
for scaled_pred_HR in scaled_preds_HR |
|
] |
|
|