|
import math |
|
from functools import partial |
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.layers import DropPath, to_2tuple, trunc_normal_ |
|
|
|
from engine.BiRefNet.config import Config |
|
|
|
config = Config() |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__( |
|
self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.0, |
|
): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.dwconv = DWConv(hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = self.fc1(x) |
|
x = self.dwconv(x, H, W) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
sr_ratio=1, |
|
): |
|
super().__init__() |
|
assert ( |
|
dim % num_heads == 0 |
|
), f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
|
self.dim = dim |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
self.q = nn.Linear(dim, dim, bias=qkv_bias) |
|
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias) |
|
self.attn_drop_prob = attn_drop |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1: |
|
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) |
|
self.norm = nn.LayerNorm(dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
q = ( |
|
self.q(x) |
|
.reshape(B, N, self.num_heads, C // self.num_heads) |
|
.permute(0, 2, 1, 3) |
|
) |
|
|
|
if self.sr_ratio > 1: |
|
x_ = x.permute(0, 2, 1).reshape(B, C, H, W) |
|
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1) |
|
x_ = self.norm(x_) |
|
kv = ( |
|
self.kv(x_) |
|
.reshape(B, -1, 2, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
else: |
|
kv = ( |
|
self.kv(x) |
|
.reshape(B, -1, 2, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
k, v = kv[0], kv[1] |
|
|
|
if config.SDPA_enabled: |
|
x = ( |
|
torch.nn.functional.scaled_dot_product_attention( |
|
q, |
|
k, |
|
v, |
|
attn_mask=None, |
|
dropout_p=self.attn_drop_prob, |
|
is_causal=False, |
|
) |
|
.transpose(1, 2) |
|
.reshape(B, N, C) |
|
) |
|
else: |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads, |
|
mlp_ratio=4.0, |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
sr_ratio=1, |
|
): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
sr_ratio=sr_ratio, |
|
) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x, H, W): |
|
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) |
|
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) |
|
|
|
return x |
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
"""Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768 |
|
): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
|
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1] |
|
self.num_patches = self.H * self.W |
|
self.proj = nn.Conv2d( |
|
in_channels, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=stride, |
|
padding=(patch_size[0] // 2, patch_size[1] // 2), |
|
) |
|
self.norm = nn.LayerNorm(embed_dim) |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
_, _, H, W = x.shape |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
|
|
return x, H, W |
|
|
|
|
|
class PyramidVisionTransformerImpr(nn.Module): |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_channels=3, |
|
num_classes=1000, |
|
embed_dims=[64, 128, 256, 512], |
|
num_heads=[1, 2, 4, 8], |
|
mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=False, |
|
qk_scale=None, |
|
drop_rate=0.0, |
|
attn_drop_rate=0.0, |
|
drop_path_rate=0.0, |
|
norm_layer=nn.LayerNorm, |
|
depths=[3, 4, 6, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
): |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.depths = depths |
|
|
|
|
|
self.patch_embed1 = OverlapPatchEmbed( |
|
img_size=img_size, |
|
patch_size=7, |
|
stride=4, |
|
in_channels=in_channels, |
|
embed_dim=embed_dims[0], |
|
) |
|
self.patch_embed2 = OverlapPatchEmbed( |
|
img_size=img_size // 4, |
|
patch_size=3, |
|
stride=2, |
|
in_channels=embed_dims[0], |
|
embed_dim=embed_dims[1], |
|
) |
|
self.patch_embed3 = OverlapPatchEmbed( |
|
img_size=img_size // 8, |
|
patch_size=3, |
|
stride=2, |
|
in_channels=embed_dims[1], |
|
embed_dim=embed_dims[2], |
|
) |
|
self.patch_embed4 = OverlapPatchEmbed( |
|
img_size=img_size // 16, |
|
patch_size=3, |
|
stride=2, |
|
in_channels=embed_dims[2], |
|
embed_dim=embed_dims[3], |
|
) |
|
|
|
|
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] |
|
cur = 0 |
|
self.block1 = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dims[0], |
|
num_heads=num_heads[0], |
|
mlp_ratio=mlp_ratios[0], |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[cur + i], |
|
norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[0], |
|
) |
|
for i in range(depths[0]) |
|
] |
|
) |
|
self.norm1 = norm_layer(embed_dims[0]) |
|
|
|
cur += depths[0] |
|
self.block2 = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dims[1], |
|
num_heads=num_heads[1], |
|
mlp_ratio=mlp_ratios[1], |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[cur + i], |
|
norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[1], |
|
) |
|
for i in range(depths[1]) |
|
] |
|
) |
|
self.norm2 = norm_layer(embed_dims[1]) |
|
|
|
cur += depths[1] |
|
self.block3 = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dims[2], |
|
num_heads=num_heads[2], |
|
mlp_ratio=mlp_ratios[2], |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[cur + i], |
|
norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[2], |
|
) |
|
for i in range(depths[2]) |
|
] |
|
) |
|
self.norm3 = norm_layer(embed_dims[2]) |
|
|
|
cur += depths[2] |
|
self.block4 = nn.ModuleList( |
|
[ |
|
Block( |
|
dim=embed_dims[3], |
|
num_heads=num_heads[3], |
|
mlp_ratio=mlp_ratios[3], |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[cur + i], |
|
norm_layer=norm_layer, |
|
sr_ratio=sr_ratios[3], |
|
) |
|
for i in range(depths[3]) |
|
] |
|
) |
|
self.norm4 = norm_layer(embed_dims[3]) |
|
|
|
|
|
|
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=0.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
elif isinstance(m, nn.Conv2d): |
|
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels |
|
fan_out //= m.groups |
|
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out)) |
|
if m.bias is not None: |
|
m.bias.data.zero_() |
|
|
|
def init_weights(self, pretrained=None): |
|
if isinstance(pretrained, str): |
|
logger = 1 |
|
|
|
|
|
def reset_drop_path(self, drop_path_rate): |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))] |
|
cur = 0 |
|
for i in range(self.depths[0]): |
|
self.block1[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[0] |
|
for i in range(self.depths[1]): |
|
self.block2[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[1] |
|
for i in range(self.depths[2]): |
|
self.block3[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
cur += self.depths[2] |
|
for i in range(self.depths[3]): |
|
self.block4[i].drop_path.drop_prob = dpr[cur + i] |
|
|
|
def freeze_patch_emb(self): |
|
self.patch_embed1.requires_grad = False |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return { |
|
"pos_embed1", |
|
"pos_embed2", |
|
"pos_embed3", |
|
"pos_embed4", |
|
"cls_token", |
|
} |
|
|
|
def get_classifier(self): |
|
return self.head |
|
|
|
def reset_classifier(self, num_classes, global_pool=""): |
|
self.num_classes = num_classes |
|
self.head = ( |
|
nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() |
|
) |
|
|
|
def forward_features(self, x): |
|
B = x.shape[0] |
|
outs = [] |
|
|
|
|
|
x, H, W = self.patch_embed1(x) |
|
for i, blk in enumerate(self.block1): |
|
x = blk(x, H, W) |
|
x = self.norm1(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed2(x) |
|
for i, blk in enumerate(self.block2): |
|
x = blk(x, H, W) |
|
x = self.norm2(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed3(x) |
|
for i, blk in enumerate(self.block3): |
|
x = blk(x, H, W) |
|
x = self.norm3(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
|
|
x, H, W = self.patch_embed4(x) |
|
for i, blk in enumerate(self.block4): |
|
x = blk(x, H, W) |
|
x = self.norm4(x) |
|
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() |
|
outs.append(x) |
|
|
|
return outs |
|
|
|
|
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
|
|
|
|
return x |
|
|
|
|
|
class DWConv(nn.Module): |
|
def __init__(self, dim=768): |
|
super(DWConv, self).__init__() |
|
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim) |
|
|
|
def forward(self, x, H, W): |
|
B, N, C = x.shape |
|
x = x.transpose(1, 2).view(B, C, H, W).contiguous() |
|
x = self.dwconv(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
return x |
|
|
|
|
|
def _conv_filter(state_dict, patch_size=16): |
|
"""convert patch embedding weight from manual patchify + linear proj to conv""" |
|
out_dict = {} |
|
for k, v in state_dict.items(): |
|
if "patch_embed.proj.weight" in k: |
|
v = v.reshape((v.shape[0], 3, patch_size, patch_size)) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
class pvt_v2_b0(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b0, self).__init__( |
|
patch_size=4, |
|
embed_dims=[32, 64, 160, 256], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[2, 2, 2, 2], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
) |
|
|
|
|
|
class pvt_v2_b1(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b1, self).__init__( |
|
patch_size=4, |
|
embed_dims=[64, 128, 320, 512], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[2, 2, 2, 2], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
) |
|
|
|
|
|
class pvt_v2_b2(PyramidVisionTransformerImpr): |
|
def __init__(self, in_channels=3, **kwargs): |
|
super(pvt_v2_b2, self).__init__( |
|
patch_size=4, |
|
embed_dims=[64, 128, 320, 512], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[3, 4, 6, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
in_channels=in_channels, |
|
) |
|
|
|
|
|
class pvt_v2_b3(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b3, self).__init__( |
|
patch_size=4, |
|
embed_dims=[64, 128, 320, 512], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[3, 4, 18, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
) |
|
|
|
|
|
class pvt_v2_b4(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b4, self).__init__( |
|
patch_size=4, |
|
embed_dims=[64, 128, 320, 512], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[8, 8, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[3, 8, 27, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
) |
|
|
|
|
|
class pvt_v2_b5(PyramidVisionTransformerImpr): |
|
def __init__(self, **kwargs): |
|
super(pvt_v2_b5, self).__init__( |
|
patch_size=4, |
|
embed_dims=[64, 128, 320, 512], |
|
num_heads=[1, 2, 5, 8], |
|
mlp_ratios=[4, 4, 4, 4], |
|
qkv_bias=True, |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
depths=[3, 6, 40, 3], |
|
sr_ratios=[8, 4, 2, 1], |
|
drop_rate=0.0, |
|
drop_path_rate=0.1, |
|
) |
|
|