|
import random |
|
from PIL import Image, ImageEnhance |
|
import numpy as np |
|
import cv2 |
|
|
|
|
|
def refine_foreground(image, mask, r=90): |
|
if mask.size != image.size: |
|
mask = mask.resize(image.size) |
|
image = np.array(image) / 255.0 |
|
mask = np.array(mask) / 255.0 |
|
estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r) |
|
image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8)) |
|
return image_masked |
|
|
|
|
|
def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90): |
|
|
|
alpha = alpha[:, :, None] |
|
F, blur_B = FB_blur_fusion_foreground_estimator( |
|
image, image, image, alpha, r) |
|
return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0] |
|
|
|
|
|
def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90): |
|
if isinstance(image, Image.Image): |
|
image = np.array(image) / 255.0 |
|
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] |
|
|
|
blurred_FA = cv2.blur(F * alpha, (r, r)) |
|
blurred_F = blurred_FA / (blurred_alpha + 1e-5) |
|
|
|
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) |
|
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) |
|
F = blurred_F + alpha * \ |
|
(image - alpha * blurred_F - (1 - alpha) * blurred_B) |
|
F = np.clip(F, 0, 1) |
|
return F, blurred_B |
|
|
|
|
|
def preproc(image, label, preproc_methods=['flip']): |
|
if 'flip' in preproc_methods: |
|
image, label = cv_random_flip(image, label) |
|
if 'crop' in preproc_methods: |
|
image, label = random_crop(image, label) |
|
if 'rotate' in preproc_methods: |
|
image, label = random_rotate(image, label) |
|
if 'enhance' in preproc_methods: |
|
image = color_enhance(image) |
|
if 'pepper' in preproc_methods: |
|
image = random_pepper(image) |
|
return image, label |
|
|
|
|
|
def cv_random_flip(img, label): |
|
if random.random() > 0.5: |
|
img = img.transpose(Image.FLIP_LEFT_RIGHT) |
|
label = label.transpose(Image.FLIP_LEFT_RIGHT) |
|
return img, label |
|
|
|
|
|
def random_crop(image, label): |
|
border = 30 |
|
image_width = image.size[0] |
|
image_height = image.size[1] |
|
border = int(min(image_width, image_height) * 0.1) |
|
crop_win_width = np.random.randint(image_width - border, image_width) |
|
crop_win_height = np.random.randint(image_height - border, image_height) |
|
random_region = ( |
|
(image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1, |
|
(image_height + crop_win_height) >> 1) |
|
return image.crop(random_region), label.crop(random_region) |
|
|
|
|
|
def random_rotate(image, label, angle=15): |
|
mode = Image.BICUBIC |
|
if random.random() > 0.8: |
|
random_angle = np.random.randint(-angle, angle) |
|
image = image.rotate(random_angle, mode) |
|
label = label.rotate(random_angle, mode) |
|
return image, label |
|
|
|
|
|
def color_enhance(image): |
|
bright_intensity = random.randint(5, 15) / 10.0 |
|
image = ImageEnhance.Brightness(image).enhance(bright_intensity) |
|
contrast_intensity = random.randint(5, 15) / 10.0 |
|
image = ImageEnhance.Contrast(image).enhance(contrast_intensity) |
|
color_intensity = random.randint(0, 20) / 10.0 |
|
image = ImageEnhance.Color(image).enhance(color_intensity) |
|
sharp_intensity = random.randint(0, 30) / 10.0 |
|
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity) |
|
return image |
|
|
|
|
|
def random_gaussian(image, mean=0.1, sigma=0.35): |
|
def gaussianNoisy(im, mean=mean, sigma=sigma): |
|
for _i in range(len(im)): |
|
im[_i] += random.gauss(mean, sigma) |
|
return im |
|
|
|
img = np.asarray(image) |
|
width, height = img.shape |
|
img = gaussianNoisy(img[:].flatten(), mean, sigma) |
|
img = img.reshape([width, height]) |
|
return Image.fromarray(np.uint8(img)) |
|
|
|
|
|
def random_pepper(img, N=0.0015): |
|
img = np.array(img) |
|
noiseNum = int(N * img.shape[0] * img.shape[1]) |
|
for i in range(noiseNum): |
|
randX = random.randint(0, img.shape[0] - 1) |
|
randY = random.randint(0, img.shape[1] - 1) |
|
img[randX, randY] = random.randint(0, 1) * 255 |
|
return Image.fromarray(img) |
|
|