Spaces:
Sleeping
Sleeping
File size: 13,406 Bytes
267744b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
<<<<<<< HEAD PS C:\Users\NAVYA\Documents\moodify> python emotions.py 2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. Dataset Columns Before Preprocessing: ['text', 'labels', 'id'] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s] Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. {'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0} {'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0} {'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0} 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it] Training completed! Model and tokenizer saved! Evaluating model on test set... 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s] Evaluation Results: Test Accuracy: 0.5779 Test F1 Score: 0.5608 C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) Classification Report: precision recall f1-score support 0 0.65 0.74 0.69 504 1 0.73 0.86 0.79 252 2 0.47 0.47 0.47 197 3 0.32 0.20 0.25 286 4 0.54 0.35 0.42 318 5 0.46 0.40 0.43 114 6 0.47 0.39 0.43 139 7 0.43 0.61 0.51 233 8 0.60 0.42 0.49 74 9 0.38 0.22 0.28 127 10 0.42 0.37 0.39 220 11 0.48 0.40 0.44 84 12 0.71 0.40 0.51 30 13 0.48 0.39 0.43 84 14 0.59 0.70 0.64 74 15 0.84 0.83 0.83 288 16 0.00 0.00 0.00 6 17 0.52 0.56 0.54 116 18 0.65 0.82 0.72 169 19 0.00 0.00 0.00 16 20 0.56 0.49 0.52 120 21 0.00 0.00 0.00 8 22 0.47 0.08 0.14 109 23 0.00 0.00 0.00 7 24 0.57 0.74 0.64 46 25 0.55 0.47 0.51 108 26 0.42 0.48 0.44 92 27 0.60 0.71 0.65 1606 accuracy 0.58 5427 macro avg 0.46 0.43 0.44 5427 weighted avg 0.56 0.58 0.56 5427 Test results saved to 'test_results.csv'! ======= PS C:\Users\NAVYA\Documents\moodify> python emotions.py 2025-02-26 20:38:46.440320: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2025-02-26 20:38:47.658979: I tensorflow/core/util/port.cc:153] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. WARNING:tensorflow:From C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\tf_keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. Dataset Columns Before Preprocessing: ['text', 'labels', 'id'] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 43410/43410 [00:22<00:00, 1958.97 examples/s] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5426/5426 [00:03<00:00, 1796.32 examples/s] Map: 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 5427/5427 [00:02<00:00, 1936.32 examples/s] Some weights of DistilBertForSequenceClassification were not initialized from the model checkpoint at distilbert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight', 'pre_classifier.bias', 'pre_classifier.weight'] You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference. {'eval_loss': 1.414624571800232, 'eval_accuracy': 0.5748249170659786, 'eval_f1': 0.55625264544128, 'eval_runtime': 37.1848, 'eval_samples_per_second': 145.92, 'eval_steps_per_second': 4.572, 'epoch': 1.0} {'eval_loss': 1.3568519353866577, 'eval_accuracy': 0.5895687430888316, 'eval_f1': 0.5727110766843768, 'eval_runtime': 38.7582, 'eval_samples_per_second': 139.996, 'eval_steps_per_second': 4.386, 'epoch': 2.0} {'train_runtime': 6368.0108, 'train_samples_per_second': 13.634, 'train_steps_per_second': 0.213, 'train_loss': 1.50392983585684, 'epoch': 2.0} 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 1356/1356 [1:46:08<00:00, 4.70s/it] Training completed! Model and tokenizer saved! Evaluating model on test set... 100%|βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ| 170/170 [00:38<00:00, 4.43it/s] Evaluation Results: Test Accuracy: 0.5779 Test F1 Score: 0.5608 C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) C:\Users\NAVYA\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\metrics\_classification.py:1565: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior. _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result)) Classification Report: precision recall f1-score support 0 0.65 0.74 0.69 504 1 0.73 0.86 0.79 252 2 0.47 0.47 0.47 197 3 0.32 0.20 0.25 286 4 0.54 0.35 0.42 318 5 0.46 0.40 0.43 114 6 0.47 0.39 0.43 139 7 0.43 0.61 0.51 233 8 0.60 0.42 0.49 74 9 0.38 0.22 0.28 127 10 0.42 0.37 0.39 220 11 0.48 0.40 0.44 84 12 0.71 0.40 0.51 30 13 0.48 0.39 0.43 84 14 0.59 0.70 0.64 74 15 0.84 0.83 0.83 288 16 0.00 0.00 0.00 6 17 0.52 0.56 0.54 116 18 0.65 0.82 0.72 169 19 0.00 0.00 0.00 16 20 0.56 0.49 0.52 120 21 0.00 0.00 0.00 8 22 0.47 0.08 0.14 109 23 0.00 0.00 0.00 7 24 0.57 0.74 0.64 46 25 0.55 0.47 0.51 108 26 0.42 0.48 0.44 92 27 0.60 0.71 0.65 1606 accuracy 0.58 5427 macro avg 0.46 0.43 0.44 5427 weighted avg 0.56 0.58 0.56 5427 Test results saved to 'test_results.csv'! >>>>>>> b1313c5d084e410cadf261f2fafd8929cb149a4f PS C:\Users\NAVYA\Doc |