Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
da222cf
1
Parent(s):
106ab3e
Refactor search_leaderboard for improved efficiency and clarity in filtering results
Browse files
app.py
CHANGED
@@ -44,19 +44,15 @@ retrieval_df = None
|
|
44 |
reranking_df = None
|
45 |
|
46 |
def search_leaderboard(df, model_name, columns_to_show, threshold=95):
|
47 |
-
if
|
48 |
return df.loc[:, columns_to_show]
|
49 |
-
|
50 |
def calculate_similarity(row):
|
51 |
-
|
52 |
-
return similarity if similarity >= threshold else 0
|
53 |
-
|
54 |
filtered_df = df.copy()
|
55 |
filtered_df["similarity"] = filtered_df.apply(calculate_similarity, axis=1)
|
56 |
-
filtered_df = filtered_df[filtered_df["similarity"]
|
57 |
-
filtered_df = filtered_df.drop('similarity', axis=1)
|
58 |
-
filtered_df = filtered_df.loc[:, columns_to_show]
|
59 |
-
|
60 |
return filtered_df
|
61 |
|
62 |
def retrieval_search_leaderboard(model_name, columns_to_show):
|
@@ -72,10 +68,12 @@ def main():
|
|
72 |
# Prepare retrieval dataframe
|
73 |
retrieval_df = load_retrieval_results(prepare_for_display=True)
|
74 |
retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (in Millions)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
|
|
75 |
|
76 |
# Prepare reranking dataframe
|
77 |
reranking_df = load_reranking_results(prepare_for_display=True)
|
78 |
reranking_columns_to_show = reranking_df.columns.tolist()
|
|
|
79 |
|
80 |
with gr.Blocks() as demo:
|
81 |
gr.HTML(HEADER)
|
@@ -92,7 +90,7 @@ def main():
|
|
92 |
)
|
93 |
retrieval_columns_to_show_input = gr.CheckboxGroup(
|
94 |
label="Columns to Show",
|
95 |
-
choices=
|
96 |
value=retrieval_columns_to_show,
|
97 |
scale=4
|
98 |
)
|
@@ -134,7 +132,7 @@ def main():
|
|
134 |
)
|
135 |
reranking_columns_to_show_input = gr.CheckboxGroup(
|
136 |
label="Columns to Show",
|
137 |
-
choices=
|
138 |
value=reranking_columns_to_show,
|
139 |
scale=4
|
140 |
)
|
@@ -144,7 +142,7 @@ def main():
|
|
144 |
datatype="markdown",
|
145 |
wrap=False,
|
146 |
show_fullscreen_button=True,
|
147 |
-
interactive=False
|
148 |
)
|
149 |
|
150 |
# Submit the search box and the leaderboard
|
|
|
44 |
reranking_df = None
|
45 |
|
46 |
def search_leaderboard(df, model_name, columns_to_show, threshold=95):
|
47 |
+
if not model_name.strip():
|
48 |
return df.loc[:, columns_to_show]
|
49 |
+
search_name = model_name.lower() # compute once for efficiency
|
50 |
def calculate_similarity(row):
|
51 |
+
return fuzz.partial_ratio(search_name, row["Model"].lower())
|
|
|
|
|
52 |
filtered_df = df.copy()
|
53 |
filtered_df["similarity"] = filtered_df.apply(calculate_similarity, axis=1)
|
54 |
+
filtered_df = filtered_df[filtered_df["similarity"] >= threshold].sort_values('similarity', ascending=False)
|
55 |
+
filtered_df = filtered_df.drop('similarity', axis=1).loc[:, columns_to_show]
|
|
|
|
|
56 |
return filtered_df
|
57 |
|
58 |
def retrieval_search_leaderboard(model_name, columns_to_show):
|
|
|
68 |
# Prepare retrieval dataframe
|
69 |
retrieval_df = load_retrieval_results(prepare_for_display=True)
|
70 |
retrieval_columns_to_show = ["Model", "Web Search Dataset (Overall Score)", "Model Size (in Millions)", "Embedding Dimension", "Max Tokens", "Num Likes"]
|
71 |
+
retrieval_cols = retrieval_df.columns.tolist() # cache columns
|
72 |
|
73 |
# Prepare reranking dataframe
|
74 |
reranking_df = load_reranking_results(prepare_for_display=True)
|
75 |
reranking_columns_to_show = reranking_df.columns.tolist()
|
76 |
+
reranking_cols = reranking_df.columns.tolist() # cache columns
|
77 |
|
78 |
with gr.Blocks() as demo:
|
79 |
gr.HTML(HEADER)
|
|
|
90 |
)
|
91 |
retrieval_columns_to_show_input = gr.CheckboxGroup(
|
92 |
label="Columns to Show",
|
93 |
+
choices=retrieval_cols, # use cached list
|
94 |
value=retrieval_columns_to_show,
|
95 |
scale=4
|
96 |
)
|
|
|
132 |
)
|
133 |
reranking_columns_to_show_input = gr.CheckboxGroup(
|
134 |
label="Columns to Show",
|
135 |
+
choices=reranking_cols, # use cached list
|
136 |
value=reranking_columns_to_show,
|
137 |
scale=4
|
138 |
)
|
|
|
142 |
datatype="markdown",
|
143 |
wrap=False,
|
144 |
show_fullscreen_button=True,
|
145 |
+
interactive=False,
|
146 |
)
|
147 |
|
148 |
# Submit the search box and the leaderboard
|