Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 5,524 Bytes
6efebdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
from pathlib import Path
from utils import load_json_results
import gradio as gr
from leaderboard_tab import search_leaderboard, update_columns_to_show, create_leaderboard_tab
# Constants
LLM_IN_CONTEXT_ABOUT_SECTION = """"""
# Global variables
llm_in_context_df = None
def load_reranking_leaderboard():
"""Load and prepare the reranking leaderboard data"""
global llm_in_context_df
dataframe_path = Path(__file__).parent / "results" / "llm_in_context_results.json"
# Prepare dataframe
llm_in_context_df = load_json_results(
dataframe_path,
prepare_for_display=True,
sort_col="Overall Score",
drop_cols=["Revision", "Precision", "Task"]
)
llm_in_context_df.insert(0, "Rank", range(1, 1 + len(llm_in_context_df)))
llm_in_context_df.rename(columns={"nDCG": "nDCG@10", "MRR": "MRR@10"}, inplace=True)
return llm_in_context_df
def reranking_search_leaderboard(model_name, columns_to_show):
"""Search function for reranking leaderboard"""
return search_leaderboard(llm_in_context_df, model_name, columns_to_show)
def update_reranker_columns_to_show(columns_to_show):
"""Update displayed columns for reranking leaderboard"""
return update_columns_to_show(llm_in_context_df, columns_to_show)
def create_llm_in_context_tab():
"""Create the complete reranking leaderboard tab"""
global llm_in_context_df
# Load data if not already loaded
if (llm_in_context_df is None):
llm_in_context_df = load_reranking_leaderboard()
# Define default columns to show
default_columns = ["Rank", "Model", "Overall Score", "Model Parameters (in Millions)",
"Embedding Dimensions", "Downloads Last Month", "MRR@10", "nDCG@10", "MAP"]
columns_widths = [80 if col == "Rank" else 400 if col == "Model" else 150 for col in initial_columns_to_show]
with gr.Tabs() as tabs:
with gr.Tab("π Context Dependant Leaderboard"):
with gr.Column():
with gr.Row(equal_height=True):
search_box = gr.Textbox(
placeholder="Search for models...",
label="Search (You can also press Enter to search)",
scale=5
)
search_button = gr.Button(
value="Search",
variant="primary",
scale=1
)
columns_to_show_input = gr.CheckboxGroup(
label="Columns to Show",
choices=llm_in_context_df.columns.tolist(),
value=initial_columns_to_show,
scale=4
)
leaderboard = gr.Dataframe(
value=llm_in_context_df.loc[:, initial_columns_to_show],
datatype="markdown",
wrap=False,
show_fullscreen_button=True,
interactive=False,
column_widths=columns_widths
)
# Connect events
search_box.submit(
search_function,
inputs=[search_box, columns_to_show_input],
outputs=leaderboard
)
columns_to_show_input.select(
update_function,
inputs=columns_to_show_input,
outputs=leaderboard
)
search_button.click(
search_function,
inputs=[search_box, columns_to_show_input],
outputs=leaderboard
)
with gr.Tab("π Context About Leaderboard"):
with gr.Column():
with gr.Row(equal_height=True):
search_box = gr.Textbox(
placeholder="Search for models...",
label="Search (You can also press Enter to search)",
scale=5
)
search_button = gr.Button(
value="Search",
variant="primary",
scale=1
)
columns_to_show_input = gr.CheckboxGroup(
label="Columns to Show",
choices=llm_in_context_df.columns.tolist(),
value=initial_columns_to_show,
scale=4
)
leaderboard = gr.Dataframe(
value=llm_in_context_df.loc[:, initial_columns_to_show],
datatype="markdown",
wrap=False,
show_fullscreen_button=True,
interactive=False,
column_widths=columns_widths
)
# Connect events
search_box.submit(
search_function,
inputs=[search_box, columns_to_show_input],
outputs=leaderboard
)
columns_to_show_input.select(
update_function,
inputs=columns_to_show_input,
outputs=leaderboard
)
search_button.click(
search_function,
inputs=[search_box, columns_to_show_input],
outputs=leaderboard
)
with gr.Tab("π΅οΈ Submit"):
submit_gradio_module(task_type)
with gr.Tab("βΉοΈ About"):
gr.Markdown(about_section)
return tabs
|