from flask import Flask, request, jsonify from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor import torchaudio from torchaudio.transforms import Resample import torch from torch.nn.utils.parametrizations import weight_norm from io import BytesIO from PIL import Image from flask_cors import CORS # ย้าย cache ไปที่ตำแหน่งที่ถูกต้อง # utils.move_cache() app = Flask(__name__) CORS(app) # Initialize TTS model from Hugging Face tts_model_name = "suno/bark" tts = pipeline(task="text-to-speech", model=tts_model_name) # Initialize Blip model for image captioning model_id = "dblasko/blip-dalle3-img2prompt" blip_model = BlipForConditionalGeneration.from_pretrained(model_id) blip_processor = BlipProcessor.from_pretrained(model_id) def generate_caption(file): # Generate caption from image using Blip model inputs = blip_processor(files=file, return_tensors="pt") pixel_values = inputs.pixel_values generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] # Use TTS model to convert generated caption to audio audio_output = tts(generated_caption) audio_path = "generated_audio_resampled.wav" torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) return generated_caption, audio_path @app.route('/upload', methods=['POST']) def upload_image(): if 'file' not in request.files: return jsonify({'error': 'No image provided'}), 400 image_file = request.files['file'] generated_caption, audio_path = generate_caption(image_file) return jsonify({'generated_caption': generated_caption, 'audio_url': audio_path}), 200 if __name__ == '__main__': app.run(port=5000, debug=True)