Spaces:
Runtime error
Runtime error
from flask import Flask, request, jsonify | |
from transformers import pipeline, BlipForConditionalGeneration, BlipProcessor | |
import torchaudio | |
from torchaudio.transforms import Resample | |
import torch | |
from torch.nn.utils.parametrizations import weight_norm | |
from io import BytesIO | |
from PIL import Image | |
from flask_cors import CORS | |
# ย้าย cache ไปที่ตำแหน่งที่ถูกต้อง | |
# utils.move_cache() | |
app = Flask(__name__) | |
CORS(app) | |
# Initialize TTS model from Hugging Face | |
tts_model_name = "suno/bark" | |
tts = pipeline(task="text-to-speech", model=tts_model_name) | |
# Initialize Blip model for image captioning | |
model_id = "dblasko/blip-dalle3-img2prompt" | |
blip_model = BlipForConditionalGeneration.from_pretrained(model_id) | |
blip_processor = BlipProcessor.from_pretrained(model_id) | |
def generate_caption(file): | |
# Generate caption from image using Blip model | |
inputs = blip_processor(files=file, return_tensors="pt") | |
pixel_values = inputs.pixel_values | |
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50) | |
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True, temperature=0.8, top_k=40, top_p=0.9)[0] | |
# Use TTS model to convert generated caption to audio | |
audio_output = tts(generated_caption) | |
audio_path = "generated_audio_resampled.wav" | |
torchaudio.save(audio_path, torch.tensor(audio_output[0]), audio_output["sampling_rate"]) | |
return generated_caption, audio_path | |
def upload_image(): | |
if 'file' not in request.files: | |
return jsonify({'error': 'No image provided'}), 400 | |
image_file = request.files['file'] | |
generated_caption, audio_path = generate_caption(image_file) | |
return jsonify({'generated_caption': generated_caption, 'audio_url': audio_path}), 200 | |
if __name__ == '__main__': | |
app.run(port=5000, debug=True) | |