File size: 9,452 Bytes
5fbe98e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
import gradio as gr
from multit2i import (
    load_models,
    infer_multi,
    infer_multi_random,
    save_gallery_images,
    change_model,
    get_model_info_md,
    loaded_models,
    get_positive_prefix,
    get_positive_suffix,
    get_negative_prefix,
    get_negative_suffix,
    get_recom_prompt_type,
    set_recom_prompt_preset,
)
from model import models

from tagger.tagger import (
    predict_tags_wd,
    remove_specific_prompt,
    convert_danbooru_to_e621_prompt,
    insert_recom_prompt,
)
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
from tagger.v2 import (
    V2_ALL_MODELS,
    v2_random_prompt,
)
from tagger.utils import (
    V2_ASPECT_RATIO_OPTIONS,
    V2_RATING_OPTIONS,
    V2_LENGTH_OPTIONS,
    V2_IDENTITY_OPTIONS,
)


load_models(models, 10)
#load_models(models, 20) # Fetching 20 models at the same time. default: 5 *This option is not working so far.


css = """

#model_info { text-align: center; display:block; }

"""

with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
    with gr.Column(): 
        with gr.Accordion("Advanced settings", open=True):
            with gr.Accordion("Recommended Prompt", open=False):
                recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
                with gr.Row():
                    positive_prefix = gr.CheckboxGroup(label="Use Positive Prefix", choices=get_positive_prefix(), value=[])
                    positive_suffix = gr.CheckboxGroup(label="Use Positive Suffix", choices=get_positive_suffix(), value=["Common"])
                    negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[], visible=False)
                    negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"], visible=False)
            with gr.Accordion("Prompt Transformer", open=False):
                v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
                v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
                v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
                v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")                    
                v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
                v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
            with gr.Accordion("Model", open=True):
                model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0])
                model_info = gr.Markdown(value=get_model_info_md(list(loaded_models.keys())[0]), elem_id="model_info")
        with gr.Group():
            with gr.Accordion("Prompt from Image File", open=False):
                tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
                with gr.Accordion(label="Advanced options", open=False):
                    tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
                    tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
                    tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for Animagine, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
                    tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)  
                    tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
                tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
                tagger_generate_from_image = gr.Button(value="Generate Tags from Image")
            with gr.Row():
                v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2)
                v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2)
                random_prompt = gr.Button(value="Extend Prompt 🎲", size="sm", scale=1)
                clear_prompt = gr.Button(value="Clear Prompt πŸ—‘οΈ", size="sm", scale=1)
            prompt = gr.Text(label="Prompt", lines=1, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
            neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
        with gr.Row():
            run_button = gr.Button("Generate Image", scale=6)
            random_button = gr.Button("Random Model 🎲", scale=3)
            image_num = gr.Number(label="Count", minimum=1, maximum=16, value=1, step=1, interactive=True, scale=1)
        results = gr.Gallery(label="Gallery", interactive=False, show_download_button=True, show_share_button=False,
                              container=True, format="png", object_fit="contain")
        image_files = gr.Files(label="Download", interactive=False)
        clear_results = gr.Button("Clear Gallery / Download")
    examples = gr.Examples(
        examples = [
            ["souryuu asuka langley, 1girl, neon genesis evangelion, plugsuit, pilot suit, red bodysuit, sitting, crossing legs, black eye patch, cat hat, throne, symmetrical, looking down, from bottom, looking at viewer, outdoors"],
            ["sailor moon, magical girl transformation, sparkles and ribbons, soft pastel colors, crescent moon motif, starry night sky background, shoujo manga style"],
            ["kafuu chino, 1girl, solo"],
            ["1girl"],
            ["beautiful sunset"],
        ],
        inputs=[prompt],
    )
    gr.Markdown(
        f"""This demo was created in reference to the following demos.

- [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood).

- [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL).

<br>The first startup takes a mind-boggling amount of time, but not so much after the second.

This is due to the time it takes for Gradio to generate an example image to cache.

            """
    )
    gr.DuplicateButton(value="Duplicate Space")

    model_name.change(change_model, [model_name], [model_info], queue=False, show_api=False)
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_multi,
        inputs=[prompt, neg_prompt, results, image_num, model_name,
                 positive_prefix, positive_suffix, negative_prefix, negative_suffix],
        outputs=[results],
        queue=True,
        show_progress="full",
        show_api=True,
    ).success(save_gallery_images, [results], [results, image_files], queue=False, show_api=False)
    gr.on(
        triggers=[random_button.click],
        fn=infer_multi_random,
        inputs=[prompt, neg_prompt, results, image_num,
                 positive_prefix, positive_suffix, negative_prefix, negative_suffix],
        outputs=[results],
        queue=True,
        show_progress="full",
        show_api=True,
    ).success(save_gallery_images, [results], [results, image_files], queue=False, show_api=False)
    clear_prompt.click(lambda: (None, None, None), None, [prompt, v2_series, v2_character], queue=False, show_api=False)
    clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
    recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
     [positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
    random_prompt.click(v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
                                           v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], queue=False, show_api=False)
    tagger_generate_from_image.click(
        predict_tags_wd,
        [tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
        [v2_series, v2_character, prompt, gr.Button(visible=False)],
        show_api=False,
    ).success(
        predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
    ).success(
        remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
    ).success(
        convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
    ).success(
        insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
    )

demo.queue()
demo.launch()