import gradio as gr import random # Load each model separately model1 = gr.load("models/pimpilikipilapi1/NSFW_master") model2 = gr.load("models/prashanth970/flux-lora-uncensored") model3 = gr.load("models/DiegoJR1973/NSFW-TrioHMH-Flux") def generate_images(text, seed, width, height, guidance_scale, num_inference_steps): if seed is not None: random.seed(seed) # Generate images using each model with the text prompt only result_image1 = model1(text) result_image2 = model2(text) result_image3 = model3(text) # Print parameters for debugging print(f"Text: {text}, Seed: {seed}, Width: {width}, Height: {height}, Guidance Scale: {guidance_scale}, Steps: {num_inference_steps}") return result_image1, result_image2, result_image3 def randomize_parameters(): seed = random.randint(0, 999999) width = random.randint(512, 2048) height = random.randint(512, 2048) guidance_scale = round(random.uniform(0.1, 20.0), 1) num_inference_steps = random.randint(1, 40) return seed, width, height, guidance_scale, num_inference_steps interface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."), gr.Slider(label="Seed", minimum=0, maximum=999999, step=1), gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0), gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28), ], outputs=[ gr.Image(label="Generated Image from NSFW_master"), gr.Image(label="Generated Image from flux-lora-uncensored"), gr.Image(label="Generated Image from NSFW-TrioHMH-Flux") ], description="Generate images with three different models based on your prompt. Note: the models run on the CPU, which may affect performance.", ) interface.launch()