import gradio as gr import random model1 = gr.load("models/pimpilikipilapi1/NSFW_master") model2 = gr.load("models/prashanth970/flux-lora-uncensored") model3 = gr.load("models/DiegoJR1973/NSFW-TrioHMH-Flux") def generate_images(text, seed, width, height, guidance_scale, num_inference_steps): if seed is not None: random.seed(seed) result_image1 = model1( text, width=width, height=height, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps ) result_image2 = model2( text, width=width - 128 if width > 640 else width, height=height - 128 if height > 640 else height, guidance_scale=guidance_scale * 1.2, num_inference_steps=max(1, num_inference_steps - 5) ) result_image3 = model3( text, width=width + 128 if width < 1920 else width, height=height + 128 if height < 1920 else height, guidance_scale=max(0.1, guidance_scale * 0.8), num_inference_steps=min(40, num_inference_steps + 5) ) print(f"Model 1: Width={width}, Height={height}, Guidance Scale={guidance_scale}, Steps={num_inference_steps}") print(f"Model 2: Width={width - 128}, Height={height - 128}, Guidance Scale={guidance_scale * 1.2}, Steps={max(1, num_inference_steps - 5)}") print(f"Model 3: Width={width + 128}, Height={height + 128}, Guidance Scale={max(0.1, guidance_scale * 0.8)}, Steps={min(40, num_inference_steps + 5)}") return result_image1, result_image2, result_image3 def randomize_parameters(): seed = random.randint(0, 999999) width = random.randint(512, 2048) height = random.randint(512, 2048) guidance_scale = round(random.uniform(0.1, 20.0), 1) num_inference_steps = random.randint(1, 40) return seed, width, height, guidance_scale, num_inference_steps interface = gr.Interface( fn=generate_images, inputs=[ gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."), gr.Slider(label="Seed", minimum=0, maximum=999999, step=1), gr.Slider(label="Width", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Height", minimum=512, maximum=2048, step=64, value=1024), gr.Slider(label="Guidance Scale", minimum=0.1, maximum=20.0, step=0.1, value=3.0), gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28), ], outputs=[ gr.Image(label="Generated Image 01"), gr.Image(label="Generated Image 02"), gr.Image(label="Generated Image 03") ], description="Generate images with three different models, each with slight variations. Please note that the models are running on the CPU, which might affect performance. Thank you for your patience!", ) interface.launch()