Update app.py
Browse files
app.py
CHANGED
@@ -1,35 +1,44 @@
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
models = {
|
5 |
"Flux Lora": "models/prashanth970/flux-lora-uncensored",
|
6 |
"TrioHMH Flux": "models/DiegoJR1973/NSFW-TrioHMH-Flux",
|
7 |
"Master": "models/pimpilikipilapi1/NSFW_master"
|
8 |
}
|
9 |
|
|
|
10 |
def generate_image(text, model_name):
|
11 |
-
model_path = models[model_name]
|
12 |
print(f"Fetching model from: {model_path}")
|
13 |
|
14 |
try:
|
15 |
-
model
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
except Exception as e:
|
19 |
print(f"Error loading model: {e}")
|
20 |
return None
|
21 |
|
22 |
-
|
23 |
interface = gr.Interface(
|
24 |
fn=generate_image,
|
25 |
inputs=[
|
26 |
-
gr.Textbox(label="Type here your imagination:", placeholder="Type your description here..."),
|
27 |
-
gr.Dropdown(label="Select Model", choices=list(models.keys()), value="Flux Lora")
|
28 |
],
|
29 |
-
outputs=gr.Image(label="Generated Image"),
|
30 |
-
theme="NoCrypt/miku",
|
31 |
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
|
32 |
)
|
33 |
|
34 |
-
|
35 |
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
+
# Define the available models
|
4 |
models = {
|
5 |
"Flux Lora": "models/prashanth970/flux-lora-uncensored",
|
6 |
"TrioHMH Flux": "models/DiegoJR1973/NSFW-TrioHMH-Flux",
|
7 |
"Master": "models/pimpilikipilapi1/NSFW_master"
|
8 |
}
|
9 |
|
10 |
+
# Function to generate an image from text using the selected model
|
11 |
def generate_image(text, model_name):
|
12 |
+
model_path = models[model_name] # Get the path of the selected model
|
13 |
print(f"Fetching model from: {model_path}")
|
14 |
|
15 |
try:
|
16 |
+
# Dynamically load the model based on the selected model path
|
17 |
+
model = gr.load(model_path) # Ensure this is the correct method to load your model
|
18 |
+
result_image = model(text) # Generate the image from the input text
|
19 |
+
|
20 |
+
# Ensure the result is in a proper image format
|
21 |
+
if isinstance(result_image, str): # if model returns a path to the image
|
22 |
+
return gr.Image(result_image)
|
23 |
+
elif isinstance(result_image, bytes): # if model returns raw image bytes
|
24 |
+
return gr.Image(value=result_image)
|
25 |
+
else:
|
26 |
+
return result_image
|
27 |
except Exception as e:
|
28 |
print(f"Error loading model: {e}")
|
29 |
return None
|
30 |
|
31 |
+
# Gradio Interface setup
|
32 |
interface = gr.Interface(
|
33 |
fn=generate_image,
|
34 |
inputs=[
|
35 |
+
gr.Textbox(label="Type here your imagination:", placeholder="Type your description here..."), # Textbox for input
|
36 |
+
gr.Dropdown(label="Select Model", choices=list(models.keys()), value="Flux Lora") # Dropdown for selecting the model
|
37 |
],
|
38 |
+
outputs=gr.Image(label="Generated Image"), # Image output
|
39 |
+
theme="NoCrypt/miku", # Set theme for the interface
|
40 |
description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
|
41 |
)
|
42 |
|
43 |
+
# Launch the Gradio interface
|
44 |
interface.launch()
|