File size: 1,167 Bytes
17e58be
190c4ad
 
77efc8c
96ad892
0389d06
190c4ad
 
 
 
0389d06
77efc8c
96ad892
190c4ad
 
 
77efc8c
96ad892
190c4ad
 
 
0389d06
 
 
190c4ad
 
0389d06
190c4ad
25cb0a6
0389d06
 
146f57d
190c4ad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
import random
import os


models = {
    "Face Projection": gr.load("models/Purz/face-projection"),
    "Flux LoRA Uncensored": gr.load("models/prashanth970/flux-lora-uncensored"),
    "NSFW TrioHMH Flux": gr.load("models/DiegoJR1973/NSFW-TrioHMH-Flux"),
    "NSFW Master": gr.load("models/pimpilikipilapi1/NSFW_master")
}

def generate_image(text, num_inference_steps):
    result_images = {}
    for model_name, model in models.items():
        result_images[model_name] = model(text)

    print(f"Inference Steps: {num_inference_steps}")
    
    return [result_images[model_name] for model_name in models]

interface = gr.Interface(
    fn=generate_image,
    inputs=[
        gr.Textbox(label="Type here your imagination:", placeholder="Type or click an example..."),
        gr.Slider(label="Number of inference steps", minimum=1, maximum=40, step=1, value=28),
    ],
    outputs=[gr.Image(label=model_name) for model_name in models],
    theme="NoCrypt/miku",
    description="Sorry for the inconvenience. The model is currently running on the CPU, which might affect performance. We appreciate your understanding.",
)

interface.launch()