chess-fast-api / routes /chess_review.py
Narendra9009's picture
changes made for getting text based review
46c25c8
from fastapi import FastAPI, File, UploadFile, HTTPException
import os
import tempfile
import chess.pgn
import chess.engine
from enum import Enum
from typing import List, Dict
from datetime import datetime
import csv
import json
from fastapi.responses import JSONResponse
import asyncio
import sys
from routes.tex_based_review import review_chess_game, validate_json
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
class GamePhase(Enum):
OPENING = "opening"
MIDDLEGAME = "middlegame"
ENDGAME = "endgame"
class Classification(Enum):
BRILLIANT = "brilliant"
GREAT = "great"
BEST = "best"
EXCELLENT = "excellent"
GOOD = "good"
INACCURACY = "inaccuracy"
MISTAKE = "mistake"
MISS = "miss"
BLUNDER = "blunder"
BOOK = "book"
FORCED = "forced"
classification_values = {
Classification.BLUNDER: 0,
Classification.MISTAKE: 0.2,
Classification.MISS: 0.3,
Classification.INACCURACY: 0.4,
Classification.GOOD: 0.65,
Classification.EXCELLENT: 0.9,
Classification.BEST: 1,
Classification.GREAT: 1,
Classification.BRILLIANT: 1,
Classification.BOOK: 1,
Classification.FORCED: 1,
}
centipawn_classifications = [
Classification.BEST,
Classification.EXCELLENT,
Classification.GOOD,
Classification.INACCURACY,
Classification.MISS,
Classification.MISTAKE,
Classification.BLUNDER,
]
# Analysis parameters
FORCED_WIN_THRESHOLD = 500
MISS_CENTIPAWN_LOSS = 300
MISS_MATE_THRESHOLD = 3
ENDGAME_MATERIAL_THRESHOLD = 24
QUEEN_VALUE = 9
def detect_game_phase(board: chess.Board, in_opening: bool) -> GamePhase:
if in_opening:
return GamePhase.OPENING
total_material = 0
queens = 0
for color in [chess.WHITE, chess.BLACK]:
for piece_type in chess.PIECE_TYPES:
if piece_type == chess.KING:
continue
count = len(board.pieces(piece_type, color))
value = {
chess.PAWN: 1,
chess.KNIGHT: 3,
chess.BISHOP: 3,
chess.ROOK: 5,
chess.QUEEN: QUEEN_VALUE
}[piece_type]
total_material += count * value
if piece_type == chess.QUEEN:
queens += count
endgame_conditions = [
total_material <= ENDGAME_MATERIAL_THRESHOLD,
queens == 0 and total_material <= ENDGAME_MATERIAL_THRESHOLD * 2,
]
return GamePhase.ENDGAME if any(endgame_conditions) else GamePhase.MIDDLEGAME
def get_evaluation_loss_threshold(classif: Classification, prev_eval: float) -> float:
prev_eval = abs(prev_eval)
if classif == Classification.BEST:
return max(0.0001 * prev_eval**2 + 0.0236 * prev_eval - 3.7143, 0)
elif classif == Classification.EXCELLENT:
return max(0.0002 * prev_eval**2 + 0.1231 * prev_eval + 27.5455, 0)
elif classif == Classification.GOOD:
return max(0.0002 * prev_eval**2 + 0.2643 * prev_eval + 60.5455, 0)
elif classif == Classification.INACCURACY:
return max(0.0002 * prev_eval**2 + 0.3624 * prev_eval + 108.0909, 0)
elif classif == Classification.MISS:
return max(0.00025 * prev_eval**2 + 0.38255 * prev_eval + 166.9541, 0)
elif classif == Classification.MISTAKE:
return max(0.0003 * prev_eval**2 + 0.4027 * prev_eval + 225.8182, 0)
else:
return float("inf")
def load_opening_book(csv_path):
opening_book = {}
try:
with open(csv_path, newline='', encoding='utf-8') as csvfile:
reader = csv.reader(csvfile)
next(reader)
for row in reader:
if len(row) < 3:
continue
pgn_moves = row[2]
game = chess.pgn.Game()
board = game.board()
for move in pgn_moves.split():
if "." in move:
continue
try:
chess_move = board.push_san(move)
fen = " ".join(board.fen().split()[:4])
opening_book[fen] = chess_move.uci()
except ValueError:
break
except Exception as e:
print(f"Error loading opening book: {e}")
return opening_book
def is_book_move(board, opening_book, max_depth=8):
if board.fullmove_number > max_depth:
return None
fen = " ".join(board.fen().split()[:4])
return opening_book.get(fen)
engine_path = os.path.join(os.getcwd(), "models", "stockfish-windows-x86-64-avx2.exe")
book_csv_path = os.path.join(os.getcwd(), "assets", "openings_master.csv")
def analyze_pgn(pgn_file: str) -> Dict:
opening_book = load_opening_book(book_csv_path)
text_based_result = review_chess_game(pgn_file)
with open(pgn_file) as pgn:
game = chess.pgn.read_game(pgn)
if not game:
return {"error": "No game found in the PGN file."}
result = {
"move_analysis": [],
"phase_analysis": {},
"player_summaries": {},
"test_based_review": text_based_result
}
with chess.engine.SimpleEngine.popen_uci(engine_path) as engine:
board = game.board()
classifications = {
"white": {phase: [] for phase in GamePhase},
"black": {phase: [] for phase in GamePhase}
}
phase_data = {phase: [] for phase in GamePhase}
in_opening = True
for move_number, node in enumerate(game.mainline(), start=1):
# Analyze position before the move
pre_info = engine.analyse(board, chess.engine.Limit(time=0.3), multipv=3)[0]
pre_eval = pre_info["score"].white().score(mate_score=10000) or 0
pre_pv_moves = pre_info.get("pv", [])
# Get best move and follow-up moves in UCI notation
best_move_pre = pre_pv_moves[0].uci() if pre_pv_moves else None
follow_up_pre = [m.uci() for m in pre_pv_moves[:min(len(pre_pv_moves), 5)]]
# Make the user move
move = node.move
board.push(move) # Update the board state
# Analyze position after the move
post_info = engine.analyse(board, chess.engine.Limit(time=0.3), multipv=3)[0]
# Get best move and follow-up moves AFTER move is played (in UCI notation)
post_pv_moves = post_info.get("pv", [])
best_move_post = post_pv_moves[0].uci() if post_pv_moves else None
follow_up_post = [m.uci() for m in post_pv_moves[:min(len(post_pv_moves), 5)]]
post_eval = post_info["score"].white().score(mate_score=10000) or 0
# Determine game phase
book_move = is_book_move(board, opening_book)
current_phase = detect_game_phase(board, in_opening)
if not book_move and in_opening:
in_opening = False
# Calculate evaluation loss
eval_loss = abs(pre_eval - post_eval)
# Initial classification
classification = Classification.BOOK if book_move else None
if not classification:
for classif in centipawn_classifications:
threshold = get_evaluation_loss_threshold(classif, pre_eval)
if eval_loss <= threshold:
classification = classif
break
classification = classification or Classification.BLUNDER
# Check for missed opportunities
is_winning = abs(pre_eval) >= FORCED_WIN_THRESHOLD
is_forced_win = pre_info["score"].is_mate() and pre_info["score"].relative.mate() <= MISS_MATE_THRESHOLD
if is_winning and move != best_move_pre and (eval_loss >= MISS_CENTIPAWN_LOSS or is_forced_win):
classification = Classification.MISS
# Check for brilliant moves
if classification == Classification.BEST:
if pre_eval < -150 and post_eval >= 150:
classification = Classification.GREAT
elif pre_eval < -300 and post_eval >= 300:
classification = Classification.BRILLIANT
# Track classifications
player = "white" if board.turn == chess.BLACK else "black"
classifications[player][current_phase].append(classification)
phase_data[current_phase].append(classification)
# Add move analysis to result (using UCI notation)
result["move_analysis"].append({
"move_number": move_number,
"player": "White" if board.turn == chess.BLACK else "Black",
"user_move": move.uci(),
"evaluation": post_eval / 100,
"evaluation_loss": eval_loss / 100,
"classification": classification.value,
"best_move_pre": best_move_pre, # Best move BEFORE move is played (UCI)
"follow_up_pre": follow_up_pre, # Follow-up moves BEFORE move is played (UCI)
"best_move_post": best_move_post, # Best move AFTER move is played (UCI)
"follow_up_post": follow_up_post # Follow-up moves AFTER move is played (UCI)
})
# Phase analysis
for phase in GamePhase:
moves = phase_data[phase]
if moves:
rating = get_phase_rating(moves)
result["phase_analysis"][phase.value] = {
"rating": rating.value,
"move_count": len(moves)
}
# Player summaries
for color in ["white", "black"]:
player = game.headers["White" if color == "white" else "Black"]
counts = {c.value: 0 for c in Classification}
for phase in GamePhase:
phase_moves = classifications[color][phase]
for m in phase_moves:
m_enum = Classification(m) if isinstance(m, str) else m # Convert if needed
counts[m_enum.value] += 1
result["player_summaries"][player] = counts
def convert_enums(obj):
if isinstance(obj, Enum): # Convert Enum to its value
return obj.value
if isinstance(obj, dict): # Recursively handle dicts
return {k: convert_enums(v) for k, v in obj.items()}
if isinstance(obj, list): # Recursively handle lists
return [convert_enums(i) for i in obj]
return obj # Return other types as they are
json_result = convert_enums(result)
return JSONResponse(content=json_result)
def get_phase_rating(classified_moves: List[Classification]) -> Classification:
if not classified_moves:
return Classification.GOOD
classified_moves = [Classification(m) if isinstance(m, str) else m for m in classified_moves]
total = sum(classification_values[m] for m in classified_moves)
average = total / len(classified_moves)
rating_order = [
(Classification.BRILLIANT, 0.95),
(Classification.GREAT, 0.85),
(Classification.BEST, 0.75),
(Classification.EXCELLENT, 0.65),
(Classification.GOOD, 0.5),
(Classification.INACCURACY, 0.35),
(Classification.MISS, 0.25),
(Classification.MISTAKE, 0.15)
]
return next((c for c, t in rating_order if average >= t), Classification.BLUNDER)