chess-fast-api / main.py
Narendra9009's picture
changes made for getting text based review
46c25c8
import io
import os
import tempfile
from fastapi import FastAPI, File, UploadFile, Form
from fastapi.responses import JSONResponse, StreamingResponse
from PIL import Image, UnidentifiedImageError
import uvicorn
from routes.segmentation import segment_chess_board
from routes.detection import detect_pieces
from routes.fen_generator import gen_fen
from routes.chess_review import analyze_pgn
from typing import List, Dict, Any, Union
from pydantic import BaseModel
import asyncio
import sys
import tracemalloc
from fastapi import requests
import base64
tracemalloc.start()
if sys.platform == "win32":
asyncio.set_event_loop_policy(asyncio.WindowsProactorEventLoopPolicy())
app = FastAPI()
class DetectionResults(BaseModel):
boxes: list
confidences: list
classes: list
class FileUpload(BaseModel):
file_data : str
@app.get("/test")
async def read_root():
return {
"name": "Narendra",
"age": 20,
"Gender": "Male"
}
@app.post("/getFen")
async def get_fen(file : UploadFile = File(), perspective : str = Form("w"), next_to_move : str = Form("w")):
if perspective not in ["w" , "b"]:
return JSONResponse(content={"error" : "Perspective should be w (white) or b (black)"}, status_code=500)
if next_to_move not in ["w" , "b"]:
return JSONResponse(content={"error" : "next to move should be w (white) or b (black)"}, status_code=500)
try:
image_content = await file.read()
if not image_content:
return JSONResponse(content={"error": "Empty file uploaded"}, status_code=400)
try:
image = Image.open(io.BytesIO(image_content))
except UnidentifiedImageError:
return JSONResponse(content={"error": "Invalid image format"}, status_code=400)
segmented_image = await segment_chess_board(image)
if isinstance(segmented_image, dict):
return JSONResponse(content=segmented_image, status_code=400)
segmented_image = segmented_image.resize((224, 224))
detection_results = await detect_pieces(segmented_image)
if "error" in detection_results:
return JSONResponse(content=detection_results, status_code=400)
fen = gen_fen(detection_results, perspective, next_to_move)
if not fen:
return JSONResponse(content={"error": "FEN generation failed", "details": "Invalid input data"}, status_code=500)
return JSONResponse(content={"FEN": fen}, status_code=200)
except Exception as e:
return JSONResponse(content={"error": "Unexpected error occurred", "details": str(e)}, status_code=500)
@app.post('/getReview')
async def getReview(file_upload: FileUpload):
# this function returns text based and overall review of the game by taking base64 encoded pgn file as input
print(os.getcwd())
print("call recieved")
if not file_upload.file_data:
return JSONResponse(content={"error": "Empty file uploaded"}, status_code=400)
try:
file_data = base64.b64decode(file_upload.file_data)
# Save the uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pgn") as tmp_file:
tmp_file.write(file_data)
tmp_file_path = tmp_file.name
# Analyze the PGN file
analysis_result = analyze_pgn(tmp_file_path)
# Clean up the temporary file
os.remove(tmp_file_path)
if not analysis_result:
return JSONResponse(content={"error": "No game found in the PGN file"}, status_code=400)
return analysis_result
except Exception as e:
return JSONResponse(content={"error": "Unexpected error occurred", "details": str(e)}, status_code=500)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)