File size: 4,363 Bytes
d8dd7fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#ONNX export code is from [labelme annotation tool](https://github.com/labelmeai/efficient-sam). Huge thanks to Kentaro Wada.

import onnxruntime
import torch

from efficient_sam.build_efficient_sam import build_efficient_sam_vits
from efficient_sam.build_efficient_sam import build_efficient_sam_vitt

import onnx_models


def export_onnx(onnx_model, output, dynamic_axes, dummy_inputs, output_names):
    with open(output, "wb") as f:
        print(f"Exporting onnx model to {output}...")
        torch.onnx.export(
            onnx_model,
            tuple(dummy_inputs.values()),
            f,
            export_params=True,
            verbose=False,
            opset_version=17,
            do_constant_folding=True,
            input_names=list(dummy_inputs.keys()),
            output_names=output_names,
            dynamic_axes=dynamic_axes,
        )

    inference_session = onnxruntime.InferenceSession(output)
    output = inference_session.run(
        output_names=output_names,
        input_feed={k: v.numpy() for k, v in dummy_inputs.items()},
    )
    print(output_names)
    print([output_i.shape for output_i in output])


def export_onnx_esam(model, output):
    onnx_model = onnx_models.OnnxEfficientSam(model=model)
    dynamic_axes = {
        "batched_images": {0: "batch", 2: "height", 3: "width"},
        "batched_point_coords": {2: "num_points"},
        "batched_point_labels": {2: "num_points"},
    }
    dummy_inputs = {
        "batched_images": torch.randn(1, 3, 1080, 1920, dtype=torch.float),
        "batched_point_coords": torch.randint(
            low=0, high=1080, size=(1, 1, 5, 2), dtype=torch.float
        ),
        "batched_point_labels": torch.randint(
            low=0, high=4, size=(1, 1, 5), dtype=torch.float
        ),
    }
    output_names = ["output_masks", "iou_predictions"]
    export_onnx(
        onnx_model=onnx_model,
        output=output,
        dynamic_axes=dynamic_axes,
        dummy_inputs=dummy_inputs,
        output_names=output_names,
    )


def export_onnx_esam_encoder(model, output):
    onnx_model = onnx_models.OnnxEfficientSamEncoder(model=model)
    dynamic_axes = {
        "batched_images": {0: "batch", 2: "height", 3: "width"},
    }
    dummy_inputs = {
        "batched_images": torch.randn(1, 3, 1080, 1920, dtype=torch.float),
    }
    output_names = ["image_embeddings"]
    export_onnx(
        onnx_model=onnx_model,
        output=output,
        dynamic_axes=dynamic_axes,
        dummy_inputs=dummy_inputs,
        output_names=output_names,
    )


def export_onnx_esam_decoder(model, output):
    onnx_model = onnx_models.OnnxEfficientSamDecoder(model=model)
    dynamic_axes = {
        "image_embeddings": {0: "batch"},
        "batched_point_coords": {2: "num_points"},
        "batched_point_labels": {2: "num_points"},
    }
    dummy_inputs = {
        "image_embeddings": torch.randn(1, 256, 64, 64, dtype=torch.float),
        "batched_point_coords": torch.randint(
            low=0, high=1080, size=(1, 1, 5, 2), dtype=torch.float
        ),
        "batched_point_labels": torch.randint(
            low=0, high=4, size=(1, 1, 5), dtype=torch.float
        ),
        "orig_im_size": torch.tensor([1080, 1920], dtype=torch.long),
    }
    output_names = ["output_masks", "iou_predictions"]
    export_onnx(
        onnx_model=onnx_model,
        output=output,
        dynamic_axes=dynamic_axes,
        dummy_inputs=dummy_inputs,
        output_names=output_names,
    )


def main():
    # faster
    export_onnx_esam(
        model=build_efficient_sam_vitt(),
        output="weights/efficient_sam_vitt.onnx",
    )
    export_onnx_esam_encoder(
        model=build_efficient_sam_vitt(),
        output="weights/efficient_sam_vitt_encoder.onnx",
    )
    export_onnx_esam_decoder(
        model=build_efficient_sam_vitt(),
        output="weights/efficient_sam_vitt_decoder.onnx",
    )

    # more accurate
    export_onnx_esam(
        model=build_efficient_sam_vits(),
        output="weights/efficient_sam_vits.onnx",
    )
    export_onnx_esam_encoder(
        model=build_efficient_sam_vits(),
        output="weights/efficient_sam_vits_encoder.onnx",
    )
    export_onnx_esam_decoder(
        model=build_efficient_sam_vits(),
        output="weights/efficient_sam_vits_decoder.onnx",
    )


if __name__ == "__main__":
    main()