Nada2001 commited on
Commit
a7edab5
·
1 Parent(s): 780b81d

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -0
app.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ import tensorflow as tf
4
+ from PIL import Image
5
+ import numpy as np
6
+ import cv2
7
+
8
+
9
+ from huggingface_hub import from_pretrained_keras
10
+ try:
11
+ model=from_pretrained_keras("Nada2001/streamlitSeg")
12
+ except:
13
+ model=tf.keras.models.load_model('/content/drive/MyDrive/dataX-ray_modelH5/UNet data xray_model3.h5')
14
+ pass
15
+
16
+ st.header("Segmentation of Teeth in Panoramic X-ray Image Using UNet")
17
+
18
+ examples=["1.jpg","2.jpg","3.jpg"]
19
+
20
+ def load_image(image_file):
21
+ img = Image.open(image_file)
22
+ return img
23
+
24
+ def convert_one_channel(img):
25
+ #some images have 3 channels , although they are grayscale image
26
+ if len(img.shape)>2:
27
+ img= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
28
+ return img
29
+ else:
30
+ return img
31
+
32
+ def convert_rgb(img):
33
+ #some images have 3 channels , although they are grayscale image
34
+ if len(img.shape)==2:
35
+ img= cv2.cvtColor(img,cv2.COLOR_GRAY2RGB)
36
+ return img
37
+ else:
38
+ return img
39
+
40
+
41
+ st.subheader("Upload Dental Panoramic X-ray Image Image")
42
+ image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
43
+
44
+
45
+ col1, col2, col3 = st.columns(3)
46
+ with col1:
47
+ ex=load_image(examples[0])
48
+ st.image(ex,width=200)
49
+ if st.button('Example 1'):
50
+ image_file=examples[0]
51
+
52
+ with col2:
53
+ ex1=load_image(examples[1])
54
+ st.image(ex1,width=200)
55
+ if st.button('Example 2'):
56
+ image_file=examples[1]
57
+
58
+
59
+ with col3:
60
+ ex2=load_image(examples[2])
61
+ st.image(ex2,width=200)
62
+ if st.button('Example 3'):
63
+ image_file=examples[2]
64
+
65
+
66
+ if image_file is not None:
67
+
68
+ img=load_image(image_file)
69
+
70
+ st.text("Making A Prediction ....")
71
+ st.image(img,width=850)
72
+
73
+ img=np.asarray(img)
74
+
75
+ img_cv=convert_one_channel(img)
76
+ img_cv=cv2.resize(img_cv,(512,512), interpolation=cv2.INTER_LANCZOS4)
77
+ img_cv=np.float32(img_cv/255)
78
+
79
+ img_cv=np.reshape(img_cv,(1,512,512,1))
80
+ prediction=model.predict(img_cv)
81
+ predicted=prediction[0]
82
+ predicted = cv2.resize(predicted, (img.shape[1],img.shape[0]), interpolation=cv2.INTER_LANCZOS4)
83
+ mask=np.uint8(predicted*255)#
84
+ _, mask = cv2.threshold(mask, thresh=0, maxval=255, type=cv2.THRESH_BINARY+cv2.THRESH_OTSU)
85
+ kernel =( np.ones((5,5), dtype=np.float32))
86
+ mask=cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel,iterations=1 )
87
+ mask=cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel,iterations=1 )
88
+ cnts,hieararch=cv2.findContours(mask,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
89
+ output = cv2.drawContours(convert_rgb(img), cnts, -1, (255, 0, 0) , 3)
90
+
91
+
92
+ if output is not None :
93
+ st.subheader("Predicted Image")
94
+ st.write(output.shape)
95
+ st.image(output,width=850)
96
+
97
+ st.text("DONE ! ....")