Spaces:
Runtime error
Runtime error
File size: 8,423 Bytes
81b1a0e e797135 6284dc0 e797135 6284dc0 e797135 54516d1 6be00d8 e797135 81b1a0e 43d2091 81b1a0e 327742a 6284dc0 327742a 81b1a0e 6284dc0 81b1a0e 327742a 81b1a0e 6284dc0 81b1a0e a10635a e4862f5 a10635a f70bf31 a10635a 81b1a0e de0b7d0 d967d62 741bf59 fbe03e2 e797135 741bf59 4420101 bfe6e38 0e5a7e4 4bb8a82 a0ef2a3 bfe6e38 b59df1c 741bf59 6284dc0 741bf59 6284dc0 741bf59 6284dc0 741bf59 4420101 6284dc0 81b1a0e fbe03e2 de5ed42 4c18769 741bf59 1acca69 81b1a0e b59df1c 1acca69 8000135 e7c2780 b59df1c 1acca69 81b1a0e 9f09c5a 741bf59 81b1a0e 1acca69 9430ab7 2ef1d69 1acca69 4c18769 9f09c5a 741bf59 1acca69 741bf59 9430ab7 1acca69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import os
import cv2
import numpy as np
import torch
import gradio as gr
import spaces
from glob import glob
from typing import Optional, Tuple
from PIL import Image
from gradio_imageslider import ImageSlider
from transformers import AutoModelForImageSegmentation
from torchvision import transforms
import requests
from io import BytesIO
torch.set_float32_matmul_precision('high')
torch.jit.script = lambda f: f
device = "cuda" if torch.cuda.is_available() else "CPU"
def array_to_pil_image(image: np.ndarray, size: Tuple[int, int] = (1024, 1024)) -> Image.Image:
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
image = Image.fromarray(image).convert('RGB')
return image
class ImagePreprocessor():
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
self.transform_image = transforms.Compose([
# transforms.Resize(resolution), # 1. keep consistent with the cv2.resize used in training 2. redundant with that in path_to_image()
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
])
def proc(self, image: Image.Image) -> torch.Tensor:
image = self.transform_image(image)
return image
usage_to_weights_file = {
'General': 'BiRefNet',
'General-Lite': 'BiRefNet_lite',
'Portrait': 'BiRefNet-portrait',
'DIS': 'BiRefNet-DIS5K',
'HRSOD': 'BiRefNet-HRSOD',
'COD': 'BiRefNet-COD',
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
'General-legacy': 'BiRefNet-legacy'
}
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
# for idx, image_path in enumerate(images):
# im = load_img(image_path, output_type="pil")
# if im is None:
# continue
# im = im.convert("RGB")
# image_size = im.size
# input_images = transform_image(im).unsqueeze(0).to("cpu")
# with torch.no_grad():
# preds = birefnet(input_images)[-1].sigmoid().cpu()
# pred = preds[0].squeeze()
# pred_pil = transforms.ToPILImage()(pred)
# mask = pred_pil.resize(image_size)
# im.putalpha(mask)
# output_file_path = os.path.join(save_dir, f"output_image_batch_{idx + 1}.png")
# im.save(output_file_path)
# output_paths.append(output_file_path)
# zip_file_path = os.path.join(save_dir, "processed_images.zip")
# with zipfile.ZipFile(zip_file_path, 'w') as zipf:
# for file in output_paths:
# zipf.write(file, os.path.basename(file))
# return output_paths, zip_file_path
@spaces.GPU
def predict(images, resolution, weights_file):
assert (images is not None), 'AssertionError: images cannot be None.'
global birefnet
# Load BiRefNet with chosen weights
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General']))
print('Using weights: {}.'.format(_weights_file))
birefnet = AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True)
birefnet.to(device)
birefnet.eval()
try:
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')]
except:
resolution = [1024, 1024]
print('Invalid resolution input. Automatically changed to 1024x1024.')
if isinstance(images, list):
save_dir = 'preds-BiRefNet'
if not os.path.exists(save_dir):
os.makedirs(save_dir)
else:
# For tab_batch
save_paths = []
images = [images]
for idx_image, image_src in enumerate(images):
if isinstance(image_src, str):
response = requests.get(image_src)
image_data = BytesIO(response.content)
image = np.array(Image.open(image_data))
else:
image = image_src
image_shape = image.shape[:2]
image_pil = array_to_pil_image(image, tuple(resolution))
# Preprocess the image
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
image_proc = image_preprocessor.proc(image_pil)
image_proc = image_proc.unsqueeze(0)
# Perform the prediction
with torch.no_grad():
scaled_pred_tensor = birefnet(image_proc.to(device))[-1].sigmoid()
if device == 'cuda':
scaled_pred_tensor = scaled_pred_tensor.cpu()
# Resize the prediction to match the original image shape
pred = torch.nn.functional.interpolate(scaled_pred_tensor, size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()
# Apply the prediction mask to the original image
image_pil = image_pil.resize(pred.shape[::-1])
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1)
image_pred = (pred * np.array(image_pil)).astype(np.uint8)
torch.cuda.empty_cache()
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0]))
cv2.imwrite(save_file_path)
save_paths.append(save_file_path)
if len(images) > 1:
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir))
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
for file in save_paths:
zipf.write(file, os.path.basename(file))
return image, image_pred
examples = [[_] for _ in glob('examples/*')][:]
# Add the option of resolution in a text box.
for idx_example, example in enumerate(examples):
examples[idx_example].append('1024x1024')
examples.append(examples[-1].copy())
examples[-1][1] = '512x512'
examples_url = [
['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'],
]
for idx_example_url, example_url in enumerate(examples_url):
examples_url[idx_example_url].append('1024x1024')
descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)'
' The resolution used in our training was `1024x1024`, thus the suggested resolution to obtain good results!\n'
' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n'
' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.')
tab_image = gr.Interface(
fn=predict,
inputs=[
gr.Image(label='Upload an image'),
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
examples=examples,
api_name="image",
description=descriptions,
)
tab_text = gr.Interface(
fn=predict,
inputs=[
gr.Textbox(label="Paste an image URL"),
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`. Higher resolutions can be much slower for inference.", label="Resolution"),
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.")
],
outputs=ImageSlider(label="BiRefNet's prediction", type="pil"),
examples=examples_url,
api_name="text",
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!',
)
tab_batch = gr.Interface(
fn=predict,
inputs=gr.File(label="Upload multiple images", type="filepath", file_count="multiple"),
outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")],
api_name="batch",
description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!',
)
demo = gr.TabbedInterface(
[tab_image, tab_text, tab_batch],
['image', 'text', 'batch'],
title="BiRefNet demo for subject extraction (general / salient / camouflaged / portrait).",
)
if __name__ == "__main__":
demo.launch(debug=True)
|