NSTiwari commited on
Commit
280f05c
·
verified ·
1 Parent(s): 9d3178b

Zero-shot object detection on videos using PaliGemma.

Browse files
Files changed (1) hide show
  1. app.py +112 -0
app.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image, ImageDraw, ImageFont
2
+ import cv2
3
+ import numpy as np
4
+ from transformers import AutoTokenizer, PaliGemmaForConditionalGeneration, PaliGemmaProcessor
5
+ import torch
6
+ import gradio as gr
7
+
8
+ # Load PaliGemma
9
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10
+ model_id = "google/paligemma-3b-mix-224"
11
+ model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(device)
12
+ processor = PaliGemmaProcessor.from_pretrained(model_id)
13
+
14
+ # Function to draw bounding boxes (your original code)
15
+ def draw_bounding_box(draw, coordinates, label, width, height):
16
+ y1, x1, y2, x2 = coordinates
17
+ y1, x1, y2, x2 = map(round, (y1*height, x1*width, y2*height, x2*width))
18
+
19
+ text_width, text_height = draw.textsize(label)
20
+ draw.rectangle([(x1, y1 - text_height - 2), (x1 + text_width + 4, y1)], fill="red")
21
+
22
+ # Draw label text
23
+ draw.text((x1 + 2, y1 - text_height - 2), label, fill="white")
24
+
25
+ # Draw bounding box
26
+ draw.rectangle([(x1, y1), (x2, y2)], outline="red", width=2)
27
+
28
+ def process_video(video_path, input_text):
29
+ cap = cv2.VideoCapture(video_path)
30
+ fourcc = cv2.VideoWriter_fourcc(*'XVID')
31
+ out = cv2.VideoWriter('output_paligemma_keras.avi', fourcc, 20.0, (int(cap.get(3)), int(cap.get(4))))
32
+
33
+ while(True):
34
+ ret, frame = cap.read()
35
+ if not ret:
36
+ break
37
+
38
+ # Convert the frame to a PIL Image
39
+ img = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
40
+
41
+ # Send text prompt and image as input.
42
+ inputs = processor(text=input_text, images=img,
43
+ padding="longest", do_convert_rgb=True, return_tensors="pt").to("cuda")
44
+ inputs = inputs.to(dtype=model.dtype)
45
+
46
+ # Get output.
47
+ with torch.no_grad():
48
+ output = model.generate(**inputs, max_length=496)
49
+
50
+ paligemma_response = processor.decode(output[0], skip_special_tokens=True)[len(input_text):].lstrip("\n")
51
+ # print(paligemma_response) # For debugging
52
+
53
+ detections = paligemma_response.split(" ; ")
54
+
55
+ # Parse the output bounding box coordinates
56
+ parsed_coordinates = []
57
+ labels = []
58
+
59
+ for item in detections:
60
+ # Remove '<loc>' tags and split the string
61
+ # print(item)
62
+ detection = item.replace("<loc", "").split()
63
+
64
+ if len(detection) >= 2:
65
+ coordinates_str = detection[0]
66
+ label = detection[1]
67
+ labels.append(label)
68
+ else:
69
+ # No label detected, skip the iteration.
70
+ continue
71
+
72
+ # Split the coordinates string by '>' to get individual coordinates
73
+ coordinates = coordinates_str.split(">")
74
+ coordinates = coordinates[:4] # Slicing to ensure only 4 values
75
+
76
+ if coordinates[-1] == '':
77
+ coordinates = coordinates[:-1]
78
+ # print(coordinates)
79
+
80
+ coordinates = [int(coord)/1024 for coord in coordinates]
81
+ # location_values = [int(loc) for loc in re.findall(r'\d{4}', coordinates)]
82
+ # y1, x1, y2, x2 = [value / 1024 for value in location_values]
83
+ parsed_coordinates.append(coordinates)
84
+
85
+ width = img.size[0]
86
+ height = img.size[1]
87
+
88
+ # Draw bounding boxes on the frame using PIL
89
+ draw = ImageDraw.Draw(img)
90
+ for coordinates, label in zip(parsed_coordinates, labels):
91
+ draw_bounding_box(draw, coordinates, label, width=width, height=height)
92
+
93
+ # Convert the PIL Image back to OpenCV format
94
+ frame = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
95
+
96
+ # Write the frame to the output video
97
+ out.write(frame)
98
+
99
+ cap.release()
100
+ out.release()
101
+
102
+ return "output_paligemma_keras.avi"
103
+
104
+ demo = gr.Interface(
105
+ fn=process_video,
106
+ inputs=[gr.Video(label="Input Video"), gr.Textbox(label="detect <class-name>")],
107
+ outputs=[gr.Video(label="Output Video")],
108
+ title="PaliGemma Object Detection",
109
+ description="Upload a video and specify the object you want to detect."
110
+ )
111
+
112
+ demo.launch(share=True)