Spaces:
NSOUP
/
No application file

File size: 22,192 Bytes
ba8d952
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
import cv2
import cv2.gapi
import cv2.gapi.ie
import cv2.gapi.onnx
import cv2.gapi.ov
import cv2.typing
import numpy
import typing


# Enumerations
TEST_CUSTOM: int
TEST_EQ: int
TEST_NE: int
TEST_LE: int
TEST_LT: int
TEST_GE: int
TEST_GT: int
TestOp = int
"""One of [TEST_CUSTOM, TEST_EQ, TEST_NE, TEST_LE, TEST_LT, TEST_GE, TEST_GT]"""

WAVE_CORRECT_HORIZ: int
WAVE_CORRECT_VERT: int
WAVE_CORRECT_AUTO: int
WaveCorrectKind = int
"""One of [WAVE_CORRECT_HORIZ, WAVE_CORRECT_VERT, WAVE_CORRECT_AUTO]"""

OpaqueKind_CV_UNKNOWN: int
OPAQUE_KIND_CV_UNKNOWN: int
OpaqueKind_CV_BOOL: int
OPAQUE_KIND_CV_BOOL: int
OpaqueKind_CV_INT: int
OPAQUE_KIND_CV_INT: int
OpaqueKind_CV_INT64: int
OPAQUE_KIND_CV_INT64: int
OpaqueKind_CV_DOUBLE: int
OPAQUE_KIND_CV_DOUBLE: int
OpaqueKind_CV_FLOAT: int
OPAQUE_KIND_CV_FLOAT: int
OpaqueKind_CV_UINT64: int
OPAQUE_KIND_CV_UINT64: int
OpaqueKind_CV_STRING: int
OPAQUE_KIND_CV_STRING: int
OpaqueKind_CV_POINT: int
OPAQUE_KIND_CV_POINT: int
OpaqueKind_CV_POINT2F: int
OPAQUE_KIND_CV_POINT2F: int
OpaqueKind_CV_POINT3F: int
OPAQUE_KIND_CV_POINT3F: int
OpaqueKind_CV_SIZE: int
OPAQUE_KIND_CV_SIZE: int
OpaqueKind_CV_RECT: int
OPAQUE_KIND_CV_RECT: int
OpaqueKind_CV_SCALAR: int
OPAQUE_KIND_CV_SCALAR: int
OpaqueKind_CV_MAT: int
OPAQUE_KIND_CV_MAT: int
OpaqueKind_CV_DRAW_PRIM: int
OPAQUE_KIND_CV_DRAW_PRIM: int
OpaqueKind = int
"""One of [OpaqueKind_CV_UNKNOWN, OPAQUE_KIND_CV_UNKNOWN, OpaqueKind_CV_BOOL, OPAQUE_KIND_CV_BOOL, OpaqueKind_CV_INT, OPAQUE_KIND_CV_INT, OpaqueKind_CV_INT64, OPAQUE_KIND_CV_INT64, OpaqueKind_CV_DOUBLE, OPAQUE_KIND_CV_DOUBLE, OpaqueKind_CV_FLOAT, OPAQUE_KIND_CV_FLOAT, OpaqueKind_CV_UINT64, OPAQUE_KIND_CV_UINT64, OpaqueKind_CV_STRING, OPAQUE_KIND_CV_STRING, OpaqueKind_CV_POINT, OPAQUE_KIND_CV_POINT, OpaqueKind_CV_POINT2F, OPAQUE_KIND_CV_POINT2F, OpaqueKind_CV_POINT3F, OPAQUE_KIND_CV_POINT3F, OpaqueKind_CV_SIZE, OPAQUE_KIND_CV_SIZE, OpaqueKind_CV_RECT, OPAQUE_KIND_CV_RECT, OpaqueKind_CV_SCALAR, OPAQUE_KIND_CV_SCALAR, OpaqueKind_CV_MAT, OPAQUE_KIND_CV_MAT, OpaqueKind_CV_DRAW_PRIM, OPAQUE_KIND_CV_DRAW_PRIM]"""

ArgKind_OPAQUE_VAL: int
ARG_KIND_OPAQUE_VAL: int
ArgKind_OPAQUE: int
ARG_KIND_OPAQUE: int
ArgKind_GOBJREF: int
ARG_KIND_GOBJREF: int
ArgKind_GMAT: int
ARG_KIND_GMAT: int
ArgKind_GMATP: int
ARG_KIND_GMATP: int
ArgKind_GFRAME: int
ARG_KIND_GFRAME: int
ArgKind_GSCALAR: int
ARG_KIND_GSCALAR: int
ArgKind_GARRAY: int
ARG_KIND_GARRAY: int
ArgKind_GOPAQUE: int
ARG_KIND_GOPAQUE: int
ArgKind = int
"""One of [ArgKind_OPAQUE_VAL, ARG_KIND_OPAQUE_VAL, ArgKind_OPAQUE, ARG_KIND_OPAQUE, ArgKind_GOBJREF, ARG_KIND_GOBJREF, ArgKind_GMAT, ARG_KIND_GMAT, ArgKind_GMATP, ARG_KIND_GMATP, ArgKind_GFRAME, ARG_KIND_GFRAME, ArgKind_GSCALAR, ARG_KIND_GSCALAR, ArgKind_GARRAY, ARG_KIND_GARRAY, ArgKind_GOPAQUE, ARG_KIND_GOPAQUE]"""


Blender_NO: int
BLENDER_NO: int
Blender_FEATHER: int
BLENDER_FEATHER: int
Blender_MULTI_BAND: int
BLENDER_MULTI_BAND: int

ExposureCompensator_NO: int
EXPOSURE_COMPENSATOR_NO: int
ExposureCompensator_GAIN: int
EXPOSURE_COMPENSATOR_GAIN: int
ExposureCompensator_GAIN_BLOCKS: int
EXPOSURE_COMPENSATOR_GAIN_BLOCKS: int
ExposureCompensator_CHANNELS: int
EXPOSURE_COMPENSATOR_CHANNELS: int
ExposureCompensator_CHANNELS_BLOCKS: int
EXPOSURE_COMPENSATOR_CHANNELS_BLOCKS: int

SeamFinder_NO: int
SEAM_FINDER_NO: int
SeamFinder_VORONOI_SEAM: int
SEAM_FINDER_VORONOI_SEAM: int
SeamFinder_DP_SEAM: int
SEAM_FINDER_DP_SEAM: int

DpSeamFinder_COLOR: int
DP_SEAM_FINDER_COLOR: int
DpSeamFinder_COLOR_GRAD: int
DP_SEAM_FINDER_COLOR_GRAD: int
DpSeamFinder_CostFunction = int
"""One of [DpSeamFinder_COLOR, DP_SEAM_FINDER_COLOR, DpSeamFinder_COLOR_GRAD, DP_SEAM_FINDER_COLOR_GRAD]"""

Timelapser_AS_IS: int
TIMELAPSER_AS_IS: int
Timelapser_CROP: int
TIMELAPSER_CROP: int

GraphCutSeamFinderBase_COST_COLOR: int
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR: int
GraphCutSeamFinderBase_COST_COLOR_GRAD: int
GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD: int
GraphCutSeamFinderBase_CostType = int
"""One of [GraphCutSeamFinderBase_COST_COLOR, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR, GraphCutSeamFinderBase_COST_COLOR_GRAD, GRAPH_CUT_SEAM_FINDER_BASE_COST_COLOR_GRAD]"""

TrackerSamplerCSC_MODE_INIT_POS: int
TRACKER_SAMPLER_CSC_MODE_INIT_POS: int
TrackerSamplerCSC_MODE_INIT_NEG: int
TRACKER_SAMPLER_CSC_MODE_INIT_NEG: int
TrackerSamplerCSC_MODE_TRACK_POS: int
TRACKER_SAMPLER_CSC_MODE_TRACK_POS: int
TrackerSamplerCSC_MODE_TRACK_NEG: int
TRACKER_SAMPLER_CSC_MODE_TRACK_NEG: int
TrackerSamplerCSC_MODE_DETECT: int
TRACKER_SAMPLER_CSC_MODE_DETECT: int
TrackerSamplerCSC_MODE = int
"""One of [TrackerSamplerCSC_MODE_INIT_POS, TRACKER_SAMPLER_CSC_MODE_INIT_POS, TrackerSamplerCSC_MODE_INIT_NEG, TRACKER_SAMPLER_CSC_MODE_INIT_NEG, TrackerSamplerCSC_MODE_TRACK_POS, TRACKER_SAMPLER_CSC_MODE_TRACK_POS, TrackerSamplerCSC_MODE_TRACK_NEG, TRACKER_SAMPLER_CSC_MODE_TRACK_NEG, TrackerSamplerCSC_MODE_DETECT, TRACKER_SAMPLER_CSC_MODE_DETECT]"""


# Classes
class Blender:
    # Functions
    @classmethod
    def createDefault(cls, type: int, try_gpu: bool = ...) -> Blender: ...

    @typing.overload
    def prepare(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ...
    @typing.overload
    def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...

    @typing.overload
    def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
    @typing.overload
    def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...

    @typing.overload
    def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
    @typing.overload
    def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...


class CameraParams:
    focal: float
    aspect: float
    ppx: float
    ppy: float
    R: cv2.typing.MatLike
    t: cv2.typing.MatLike

    # Functions
    def K(self) -> cv2.typing.MatLike: ...


class ExposureCompensator:
    # Functions
    @classmethod
    def createDefault(cls, type: int) -> ExposureCompensator: ...

    def feed(self, corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat]) -> None: ...

    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, arg1: typing.Sequence[cv2.typing.MatLike]) -> None: ...

    def setUpdateGain(self, b: bool) -> None: ...

    def getUpdateGain(self) -> bool: ...


class ImageFeatures:
    img_idx: int
    img_size: cv2.typing.Size
    keypoints: typing.Sequence[cv2.KeyPoint]
    descriptors: cv2.UMat

    # Functions
    def getKeypoints(self) -> typing.Sequence[cv2.KeyPoint]: ...


class MatchesInfo:
    src_img_idx: int
    dst_img_idx: int
    matches: typing.Sequence[cv2.DMatch]
    inliers_mask: numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]
    num_inliers: int
    H: cv2.typing.MatLike
    confidence: float

    # Functions
    def getMatches(self) -> typing.Sequence[cv2.DMatch]: ...

    def getInliers(self) -> numpy.ndarray[typing.Any, numpy.dtype[numpy.uint8]]: ...


class FeaturesMatcher:
    # Functions
    def apply(self, features1: ImageFeatures, features2: ImageFeatures) -> MatchesInfo: ...

    def apply2(self, features: typing.Sequence[ImageFeatures], mask: cv2.UMat | None = ...) -> typing.Sequence[MatchesInfo]: ...

    def isThreadSafe(self) -> bool: ...

    def collectGarbage(self) -> None: ...


class Estimator:
    # Functions
    def apply(self, features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], cameras: typing.Sequence[CameraParams]) -> tuple[bool, typing.Sequence[CameraParams]]: ...


class SeamFinder:
    # Functions
    def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...

    @classmethod
    def createDefault(cls, type: int) -> SeamFinder: ...


class GraphCutSeamFinder:
    # Functions
    def __init__(self, cost_type: str, terminal_cost: float = ..., bad_region_penalty: float = ...) -> None: ...

    def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...


class Timelapser:
    # Functions
    @classmethod
    def createDefault(cls, type: int) -> Timelapser: ...

    def initialize(self, corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> None: ...

    @typing.overload
    def process(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
    @typing.overload
    def process(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...

    def getDst(self) -> cv2.UMat: ...


class ProjectorBase:
    ...

class FeatherBlender(Blender):
    # Functions
    def __init__(self, sharpness: float = ...) -> None: ...

    def sharpness(self) -> float: ...

    def setSharpness(self, val: float) -> None: ...

    def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...

    @typing.overload
    def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
    @typing.overload
    def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...

    @typing.overload
    def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
    @typing.overload
    def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...

    def createWeightMaps(self, masks: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], weight_maps: typing.Sequence[cv2.UMat]) -> tuple[cv2.typing.Rect, typing.Sequence[cv2.UMat]]: ...


class MultiBandBlender(Blender):
    # Functions
    def __init__(self, try_gpu: int = ..., num_bands: int = ..., weight_type: int = ...) -> None: ...

    def numBands(self) -> int: ...

    def setNumBands(self, val: int) -> None: ...

    def prepare(self, dst_roi: cv2.typing.Rect) -> None: ...

    @typing.overload
    def feed(self, img: cv2.typing.MatLike, mask: cv2.typing.MatLike, tl: cv2.typing.Point) -> None: ...
    @typing.overload
    def feed(self, img: cv2.UMat, mask: cv2.UMat, tl: cv2.typing.Point) -> None: ...

    @typing.overload
    def blend(self, dst: cv2.typing.MatLike, dst_mask: cv2.typing.MatLike) -> tuple[cv2.typing.MatLike, cv2.typing.MatLike]: ...
    @typing.overload
    def blend(self, dst: cv2.UMat, dst_mask: cv2.UMat) -> tuple[cv2.UMat, cv2.UMat]: ...


class NoExposureCompensator(ExposureCompensator):
    # Functions
    @typing.overload
    def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.typing.MatLike, arg4: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, arg1: int, arg2: cv2.typing.Point, arg3: cv2.UMat, arg4: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...


class GainCompensator(ExposureCompensator):
    # Functions
    @typing.overload
    def __init__(self) -> None: ...
    @typing.overload
    def __init__(self, nr_feeds: int) -> None: ...

    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...

    def setNrFeeds(self, nr_feeds: int) -> None: ...

    def getNrFeeds(self) -> int: ...

    def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...

    def getSimilarityThreshold(self) -> float: ...


class ChannelsCompensator(ExposureCompensator):
    # Functions
    def __init__(self, nr_feeds: int = ...) -> None: ...

    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...

    def setNrFeeds(self, nr_feeds: int) -> None: ...

    def getNrFeeds(self) -> int: ...

    def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...

    def getSimilarityThreshold(self) -> float: ...


class BlocksCompensator(ExposureCompensator):
    # Functions
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...

    def setNrFeeds(self, nr_feeds: int) -> None: ...

    def getNrFeeds(self) -> int: ...

    def setSimilarityThreshold(self, similarity_threshold: float) -> None: ...

    def getSimilarityThreshold(self) -> float: ...

    @typing.overload
    def setBlockSize(self, width: int, height: int) -> None: ...
    @typing.overload
    def setBlockSize(self, size: cv2.typing.Size) -> None: ...

    def getBlockSize(self) -> cv2.typing.Size: ...

    def setNrGainsFilteringIterations(self, nr_iterations: int) -> None: ...

    def getNrGainsFilteringIterations(self) -> int: ...


class BestOf2NearestMatcher(FeaturesMatcher):
    # Functions
    def __init__(self, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> None: ...

    def collectGarbage(self) -> None: ...

    @classmethod
    def create(cls, try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ..., matches_confindece_thresh: float = ...) -> BestOf2NearestMatcher: ...


class HomographyBasedEstimator(Estimator):
    # Functions
    def __init__(self, is_focals_estimated: bool = ...) -> None: ...


class AffineBasedEstimator(Estimator):
    # Functions
    def __init__(self) -> None: ...


class BundleAdjusterBase(Estimator):
    # Functions
    def refinementMask(self) -> cv2.typing.MatLike: ...

    def setRefinementMask(self, mask: cv2.typing.MatLike) -> None: ...

    def confThresh(self) -> float: ...

    def setConfThresh(self, conf_thresh: float) -> None: ...

    def termCriteria(self) -> cv2.typing.TermCriteria: ...

    def setTermCriteria(self, term_criteria: cv2.typing.TermCriteria) -> None: ...


class NoSeamFinder(SeamFinder):
    # Functions
    def find(self, arg1: typing.Sequence[cv2.UMat], arg2: typing.Sequence[cv2.typing.Point], arg3: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...


class PairwiseSeamFinder(SeamFinder):
    # Functions
    def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...


class DpSeamFinder(SeamFinder):
    # Functions
    def __init__(self, costFunc: str) -> None: ...

    def setCostFunction(self, val: str) -> None: ...


class TimelapserCrop(Timelapser):
    ...

class SphericalProjector(ProjectorBase):
    # Functions
    def mapForward(self, x: float, y: float, u: float, v: float) -> None: ...

    def mapBackward(self, u: float, v: float, x: float, y: float) -> None: ...


class BlocksGainCompensator(BlocksCompensator):
    # Functions
    @typing.overload
    def __init__(self, bl_width: int = ..., bl_height: int = ...) -> None: ...
    @typing.overload
    def __init__(self, bl_width: int, bl_height: int, nr_feeds: int) -> None: ...

    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.typing.MatLike, mask: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
    @typing.overload
    def apply(self, index: int, corner: cv2.typing.Point, image: cv2.UMat, mask: cv2.UMat) -> cv2.UMat: ...

    def getMatGains(self, umv: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[cv2.typing.MatLike]: ...

    def setMatGains(self, umv: typing.Sequence[cv2.typing.MatLike]) -> None: ...


class BlocksChannelsCompensator(BlocksCompensator):
    # Functions
    def __init__(self, bl_width: int = ..., bl_height: int = ..., nr_feeds: int = ...) -> None: ...


class BestOf2NearestRangeMatcher(BestOf2NearestMatcher):
    # Functions
    def __init__(self, range_width: int = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ..., num_matches_thresh2: int = ...) -> None: ...


class AffineBestOf2NearestMatcher(BestOf2NearestMatcher):
    # Functions
    def __init__(self, full_affine: bool = ..., try_use_gpu: bool = ..., match_conf: float = ..., num_matches_thresh1: int = ...) -> None: ...


class NoBundleAdjuster(BundleAdjusterBase):
    # Functions
    def __init__(self) -> None: ...


class BundleAdjusterReproj(BundleAdjusterBase):
    # Functions
    def __init__(self) -> None: ...


class BundleAdjusterRay(BundleAdjusterBase):
    # Functions
    def __init__(self) -> None: ...


class BundleAdjusterAffine(BundleAdjusterBase):
    # Functions
    def __init__(self) -> None: ...


class BundleAdjusterAffinePartial(BundleAdjusterBase):
    # Functions
    def __init__(self) -> None: ...


class VoronoiSeamFinder(PairwiseSeamFinder):
    # Functions
    def find(self, src: typing.Sequence[cv2.UMat], corners: typing.Sequence[cv2.typing.Point], masks: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...



# Functions
def calibrateRotatingCamera(Hs: typing.Sequence[cv2.typing.MatLike], K: cv2.typing.MatLike | None = ...) -> tuple[bool, cv2.typing.MatLike]: ...

@typing.overload
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.typing.MatLike], masks: typing.Sequence[cv2.typing.MatLike] | None = ...) -> typing.Sequence[ImageFeatures]: ...
@typing.overload
def computeImageFeatures(featuresFinder: cv2.Feature2D, images: typing.Sequence[cv2.UMat], masks: typing.Sequence[cv2.UMat] | None = ...) -> typing.Sequence[ImageFeatures]: ...

@typing.overload
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.typing.MatLike, mask: cv2.typing.MatLike | None = ...) -> ImageFeatures: ...
@typing.overload
def computeImageFeatures2(featuresFinder: cv2.Feature2D, image: cv2.UMat, mask: cv2.UMat | None = ...) -> ImageFeatures: ...

@typing.overload
def createLaplacePyr(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
@typing.overload
def createLaplacePyr(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...

@typing.overload
def createLaplacePyrGpu(img: cv2.typing.MatLike, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...
@typing.overload
def createLaplacePyrGpu(img: cv2.UMat, num_levels: int, pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...

@typing.overload
def createWeightMap(mask: cv2.typing.MatLike, sharpness: float, weight: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
@typing.overload
def createWeightMap(mask: cv2.UMat, sharpness: float, weight: cv2.UMat) -> cv2.UMat: ...

def focalsFromHomography(H: cv2.typing.MatLike, f0: float, f1: float, f0_ok: bool, f1_ok: bool) -> None: ...

def leaveBiggestComponent(features: typing.Sequence[ImageFeatures], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> typing.Sequence[int]: ...

def matchesGraphAsString(paths: typing.Sequence[str], pairwise_matches: typing.Sequence[MatchesInfo], conf_threshold: float) -> str: ...

@typing.overload
def normalizeUsingWeightMap(weight: cv2.typing.MatLike, src: cv2.typing.MatLike) -> cv2.typing.MatLike: ...
@typing.overload
def normalizeUsingWeightMap(weight: cv2.UMat, src: cv2.UMat) -> cv2.UMat: ...

def overlapRoi(tl1: cv2.typing.Point, tl2: cv2.typing.Point, sz1: cv2.typing.Size, sz2: cv2.typing.Size, roi: cv2.typing.Rect) -> bool: ...

def restoreImageFromLaplacePyr(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...

def restoreImageFromLaplacePyrGpu(pyr: typing.Sequence[cv2.UMat]) -> typing.Sequence[cv2.UMat]: ...

@typing.overload
def resultRoi(corners: typing.Sequence[cv2.typing.Point], images: typing.Sequence[cv2.UMat]) -> cv2.typing.Rect: ...
@typing.overload
def resultRoi(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...

def resultRoiIntersection(corners: typing.Sequence[cv2.typing.Point], sizes: typing.Sequence[cv2.typing.Size]) -> cv2.typing.Rect: ...

def resultTl(corners: typing.Sequence[cv2.typing.Point]) -> cv2.typing.Point: ...

def selectRandomSubset(count: int, size: int, subset: typing.Sequence[int]) -> None: ...

def stitchingLogLevel() -> int: ...

@typing.overload
def strip(params: cv2.gapi.ie.PyParams) -> cv2.gapi.GNetParam: ...
@typing.overload
def strip(params: cv2.gapi.onnx.PyParams) -> cv2.gapi.GNetParam: ...
@typing.overload
def strip(params: cv2.gapi.ov.PyParams) -> cv2.gapi.GNetParam: ...

def waveCorrect(rmats: typing.Sequence[cv2.typing.MatLike], kind: WaveCorrectKind) -> typing.Sequence[cv2.typing.MatLike]: ...