Spaces:
Runtime error
Runtime error
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. team and BigScience workshop. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """PyTorch BLOOM model.""" | |
| import math | |
| import warnings | |
| from typing import Optional, Tuple, Union | |
| import torch | |
| import torch.utils.checkpoint | |
| from torch import nn | |
| from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss | |
| from torch.nn import functional as F | |
| from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward | |
| from ...modeling_outputs import ( | |
| BaseModelOutputWithPastAndCrossAttentions, | |
| CausalLMOutputWithCrossAttentions, | |
| QuestionAnsweringModelOutput, | |
| SequenceClassifierOutputWithPast, | |
| TokenClassifierOutput, | |
| ) | |
| from ...modeling_utils import PreTrainedModel | |
| from ...utils import logging | |
| from .configuration_bloom import BloomConfig | |
| logger = logging.get_logger(__name__) | |
| _CHECKPOINT_FOR_DOC = "bigscience/bloom-560m" | |
| _CONFIG_FOR_DOC = "BloomConfig" | |
| BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST = [ | |
| "bigscience/bigscience-small-testing", | |
| "bigscience/bloom-560m", | |
| "bigscience/bloom-1b1", | |
| "bigscience/bloom-1b7", | |
| "bigscience/bloom-3b", | |
| "bigscience/bloom-7b1", | |
| "bigscience/bloom", | |
| ] | |
| def _make_causal_mask( | |
| input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| """ | |
| Make causal mask used for self-attention. | |
| """ | |
| batch_size, target_length = input_ids_shape | |
| mask = torch.empty((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device) | |
| # ONNX doesn't support `torch.Tensor.triu` properly, thus we use this workaround | |
| seq_ids = torch.arange(target_length, device=device) | |
| mask[:, past_key_values_length:] = seq_ids[:, None] < seq_ids[None, :] | |
| if past_key_values_length > 0: | |
| mask[:, :past_key_values_length] = False | |
| expanded_mask = mask[None, None, :, :].expand(batch_size, 1, target_length, target_length + past_key_values_length) | |
| return expanded_mask | |
| def _expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor: | |
| """ | |
| Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`. | |
| """ | |
| batch_size, src_length = mask.shape | |
| tgt_length = tgt_length if tgt_length is not None else src_length | |
| expanded_mask = ~(mask[:, None, None, :].to(torch.bool)) | |
| return expanded_mask.expand(batch_size, 1, tgt_length, src_length) | |
| def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| """ | |
| Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it | |
| relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value | |
| `softmax(l+a) = softmax(l)`. Based on | |
| https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 | |
| TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly. | |
| Args: | |
| Returns tensor shaped (batch_size * num_heads, 1, max_seq_len) | |
| attention_mask (`torch.Tensor`): | |
| Token-wise attention mask, this should be of shape (batch_size, max_seq_len). | |
| num_heads (`int`, *required*): | |
| number of heads | |
| dtype (`torch.dtype`, *optional*, default=`torch.bfloat16`): | |
| dtype of the output tensor | |
| """ | |
| batch_size, seq_length = attention_mask.shape | |
| closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) | |
| base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.pow(base, powers) | |
| if closest_power_of_2 != num_heads: | |
| extra_base = torch.tensor( | |
| 2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32 | |
| ) | |
| num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) | |
| extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32) | |
| slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) | |
| # Note: alibi will added to the attention bias that will be applied to the query, key product of attention | |
| # => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length) | |
| # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) | |
| # => the query_length dimension will then be broadcasted correctly | |
| # This is more or less identical to T5's relative position bias: | |
| # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 | |
| arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :] | |
| alibi = slopes[..., None] * arange_tensor | |
| return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype) | |
| def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor: | |
| """ | |
| Dropout add function | |
| Args: | |
| x (`torch.tensor`, *required*): | |
| input tensor | |
| residual (`torch.tensor`, *required*): | |
| residual tensor | |
| prob (`float`, *required*): | |
| dropout probability | |
| training (`bool`, *required*): | |
| training mode | |
| """ | |
| out = F.dropout(x, p=prob, training=training) | |
| out = residual + out | |
| return out | |
| def bloom_gelu_forward(x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Custom bias GELU function. Adapted from Megatron-DeepSpeed code. Here we use a simple implementation (inference) to | |
| make the model jitable. | |
| Args: | |
| x (`torch.tensor`, *required*): | |
| input hidden states | |
| """ | |
| return x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))) | |
| def bloom_gelu_back(g: torch.Tensor, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| gradient of tanh approximation of gelu gradient of actual gelu is: 0.5 * (1. + torch.erf(x * 0.70710678)) + | |
| 0.3989423 * x * torch.exp(-0.5 * x * x) | |
| Args: | |
| g (`torch.tensor`, *required*): | |
| gradient output tensor | |
| x (`torch.tensor`, *required*): | |
| input tensor | |
| """ | |
| x = x[0] # x is a tuple of 1 element, needs to unpack it first | |
| tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)) | |
| # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243 | |
| ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (1 + tanh_out) | |
| return ff * g | |
| class GeLUFunction(torch.autograd.Function): | |
| def forward(ctx, input: torch.Tensor) -> torch.Tensor: | |
| ctx.save_for_backward(input) | |
| return bloom_gelu_forward(input) | |
| def backward(ctx, grad_output: torch.Tensor) -> torch.Tensor: | |
| input = ctx.saved_tensors | |
| tmp = bloom_gelu_back(grad_output, input) | |
| return tmp | |
| class BloomGelu(nn.Module): | |
| """ | |
| BloomBiasGelu wrapper function that make use of the simple function on inference mode to make the model | |
| torchscriptable and use the autograd function in training mode to get the accurate results of the gradients Partly | |
| copied from Megatron-DeepSpeed code and adapted for our needs | |
| See here why autograd functions are not torchscriptable: https://github.com/pytorch/pytorch/issues/22329 | |
| """ | |
| def __init__(self): | |
| super().__init__() | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| if self.training: | |
| return GeLUFunction.apply(x) | |
| else: | |
| return bloom_gelu_forward(x) | |
| class BloomAttention(nn.Module): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__() | |
| self.pretraining_tp = config.pretraining_tp | |
| self.slow_but_exact = config.slow_but_exact | |
| self.hidden_size = config.hidden_size | |
| self.num_heads = config.n_head | |
| self.head_dim = self.hidden_size // self.num_heads | |
| self.split_size = self.hidden_size | |
| self.hidden_dropout = config.hidden_dropout | |
| if self.head_dim * self.num_heads != self.hidden_size: | |
| raise ValueError( | |
| f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:" | |
| f" {self.num_heads})." | |
| ) | |
| # Layer-wise attention scaling | |
| self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim) | |
| self.beta = 1.0 | |
| self.query_key_value = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=True) | |
| self.dense = nn.Linear(self.hidden_size, self.hidden_size) | |
| self.attention_dropout = nn.Dropout(config.attention_dropout) | |
| def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
| """ | |
| Split the last dimension into (num_heads, head_dim) without making any copies, results share same memory | |
| storage as `fused_qkv` | |
| Args: | |
| fused_qkv (`torch.tensor`, *required*): [batch_size, seq_length, num_heads * 3 * head_dim] | |
| Returns: | |
| query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim] | |
| value: [batch_size, seq_length, num_heads, head_dim] | |
| """ | |
| batch_size, seq_length, three_times_hidden_size = fused_qkv.shape | |
| fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim) | |
| return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :] | |
| def _merge_heads(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Merge heads together over the last dimension | |
| Args: | |
| x (`torch.tensor`, *required*): [batch_size * num_heads, seq_length, head_dim] | |
| Returns: | |
| torch.tensor: [batch_size, seq_length, num_heads * head_dim] | |
| """ | |
| # What we want to achieve is: | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| batch_size_and_num_heads, seq_length, _ = x.shape | |
| batch_size = batch_size_and_num_heads // self.num_heads | |
| # First view to decompose the batch size | |
| # batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim | |
| x = x.view(batch_size, self.num_heads, seq_length, self.head_dim) | |
| # batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim | |
| x = x.permute(0, 2, 1, 3) | |
| # batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim | |
| return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| residual: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size] | |
| # 3 x [batch_size, seq_length, num_heads, head_dim] | |
| (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv) | |
| batch_size, q_length, _, _ = query_layer.shape | |
| query_layer = query_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) | |
| key_layer = key_layer.permute(0, 2, 3, 1).reshape(batch_size * self.num_heads, self.head_dim, q_length) | |
| value_layer = value_layer.transpose(1, 2).reshape(batch_size * self.num_heads, q_length, self.head_dim) | |
| if layer_past is not None: | |
| past_key, past_value = layer_past | |
| # concatenate along seq_length dimension: | |
| # - key: [batch_size * self.num_heads, head_dim, kv_length] | |
| # - value: [batch_size * self.num_heads, kv_length, head_dim] | |
| key_layer = torch.cat((past_key, key_layer), dim=2) | |
| value_layer = torch.cat((past_value, value_layer), dim=1) | |
| _, _, kv_length = key_layer.shape | |
| if use_cache is True: | |
| present = (key_layer, value_layer) | |
| else: | |
| present = None | |
| # [batch_size * num_heads, q_length, kv_length] | |
| # we use `torch.Tensor.baddbmm` instead of `torch.baddbmm` as the latter isn't supported by TorchScript v1.11 | |
| matmul_result = alibi.baddbmm( | |
| batch1=query_layer, | |
| batch2=key_layer, | |
| beta=self.beta, | |
| alpha=self.inv_norm_factor, | |
| ) | |
| # change view to [batch_size, num_heads, q_length, kv_length] | |
| attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length) | |
| # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length] | |
| input_dtype = attention_scores.dtype | |
| # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38` | |
| if input_dtype == torch.float16: | |
| attention_scores = attention_scores.to(torch.float) | |
| attn_weights = torch.masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min) | |
| attention_probs = F.softmax(attn_weights, dim=-1, dtype=torch.float32).to(input_dtype) | |
| # [batch_size, num_heads, q_length, kv_length] | |
| attention_probs = self.attention_dropout(attention_probs) | |
| if head_mask is not None: | |
| attention_probs = attention_probs * head_mask | |
| # change view [batch_size x num_heads, q_length, kv_length] | |
| attention_probs_reshaped = attention_probs.view(batch_size * self.num_heads, q_length, kv_length) | |
| # matmul: [batch_size * num_heads, q_length, head_dim] | |
| context_layer = torch.bmm(attention_probs_reshaped, value_layer) | |
| # change view [batch_size, q_length, num_heads * head_dim] | |
| context_layer = self._merge_heads(context_layer) | |
| # aggregate results across tp ranks. See here: https://github.com/pytorch/pytorch/issues/76232 | |
| if self.pretraining_tp > 1 and self.slow_but_exact: | |
| slices = self.hidden_size / self.pretraining_tp | |
| output_tensor = torch.zeros_like(context_layer) | |
| for i in range(self.pretraining_tp): | |
| output_tensor = output_tensor + F.linear( | |
| context_layer[:, :, int(i * slices) : int((i + 1) * slices)], | |
| self.dense.weight[:, int(i * slices) : int((i + 1) * slices)], | |
| ) | |
| else: | |
| output_tensor = self.dense(context_layer) | |
| output_tensor = dropout_add(output_tensor, residual, self.hidden_dropout, self.training) | |
| outputs = (output_tensor, present) | |
| if output_attentions: | |
| outputs += (attention_probs,) | |
| return outputs | |
| class BloomMLP(nn.Module): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.pretraining_tp = config.pretraining_tp | |
| self.slow_but_exact = config.slow_but_exact | |
| self.dense_h_to_4h = nn.Linear(hidden_size, 4 * hidden_size) | |
| self.gelu_impl = BloomGelu() | |
| self.dense_4h_to_h = nn.Linear(4 * hidden_size, hidden_size) | |
| self.hidden_dropout = config.hidden_dropout | |
| def forward(self, hidden_states: torch.Tensor, residual: torch.Tensor) -> torch.Tensor: | |
| hidden_states = self.gelu_impl(self.dense_h_to_4h(hidden_states)) | |
| if self.pretraining_tp > 1 and self.slow_but_exact: | |
| intermediate_output = torch.zeros_like(residual) | |
| slices = self.dense_4h_to_h.weight.shape[-1] / self.pretraining_tp | |
| for i in range(self.pretraining_tp): | |
| intermediate_output = intermediate_output + F.linear( | |
| hidden_states[:, :, int(i * slices) : int((i + 1) * slices)], | |
| self.dense_4h_to_h.weight[:, int(i * slices) : int((i + 1) * slices)], | |
| ) | |
| else: | |
| intermediate_output = self.dense_4h_to_h(hidden_states) | |
| output = dropout_add(intermediate_output, residual, self.hidden_dropout, self.training) | |
| return output | |
| class BloomBlock(nn.Module): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__() | |
| hidden_size = config.hidden_size | |
| self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.num_heads = config.n_head | |
| self.self_attention = BloomAttention(config) | |
| self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon) | |
| self.mlp = BloomMLP(config) | |
| self.apply_residual_connection_post_layernorm = config.apply_residual_connection_post_layernorm | |
| self.hidden_dropout = config.hidden_dropout | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| alibi: torch.Tensor, | |
| attention_mask: torch.Tensor, | |
| layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| use_cache: bool = False, | |
| output_attentions: bool = False, | |
| ): | |
| # hidden_states: [batch_size, seq_length, hidden_size] | |
| # Layer norm at the beginning of the transformer layer. | |
| layernorm_output = self.input_layernorm(hidden_states) | |
| # Layer norm post the self attention. | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = hidden_states | |
| # Self attention. | |
| attn_outputs = self.self_attention( | |
| layernorm_output, | |
| residual, | |
| layer_past=layer_past, | |
| attention_mask=attention_mask, | |
| alibi=alibi, | |
| head_mask=head_mask, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| ) | |
| attention_output = attn_outputs[0] | |
| outputs = attn_outputs[1:] | |
| layernorm_output = self.post_attention_layernorm(attention_output) | |
| # Get residual | |
| if self.apply_residual_connection_post_layernorm: | |
| residual = layernorm_output | |
| else: | |
| residual = attention_output | |
| # MLP. | |
| output = self.mlp(layernorm_output, residual) | |
| if use_cache: | |
| outputs = (output,) + outputs | |
| else: | |
| outputs = (output,) + outputs[1:] | |
| return outputs # hidden_states, present, attentions | |
| class BloomPreTrainedModel(PreTrainedModel): | |
| config_class = BloomConfig | |
| base_model_prefix = "transformer" | |
| supports_gradient_checkpointing = True | |
| _no_split_modules = ["BloomBlock"] | |
| _skip_keys_device_placement = "past_key_values" | |
| def __init__(self, *inputs, **kwargs): | |
| super().__init__(*inputs, **kwargs) | |
| def _init_weights(self, module: nn.Module): | |
| """Initialize the weights.""" | |
| if isinstance(module, nn.Linear): | |
| # Slightly different from the TF version which uses truncated_normal for initialization | |
| # cf https://github.com/pytorch/pytorch/pull/5617 | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.bias is not None: | |
| module.bias.data.zero_() | |
| elif isinstance(module, nn.Embedding): | |
| module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) | |
| if module.padding_idx is not None: | |
| module.weight.data[module.padding_idx].zero_() | |
| elif isinstance(module, LayerNorm): | |
| module.bias.data.zero_() | |
| module.weight.data.fill_(1.0) | |
| def _set_gradient_checkpointing(self, module: nn.Module, value: bool = False): | |
| if isinstance(module, BloomModel): | |
| module.gradient_checkpointing = value | |
| def _convert_to_standard_cache( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]], batch_size: int | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| Standardizes the format of the cache so as to match most implementations, i.e. to tuple(tuple([batch_size, | |
| num_heads, ...])) | |
| """ | |
| batch_size_times_num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
| num_heads = batch_size_times_num_heads // batch_size | |
| # key: [batch_size * num_heads, head_dim, seq_length] -> [batch_size, num_heads, head_dim, seq_length] | |
| # value: [batch_size * num_heads, seq_length, head_dim] -> [batch_size, num_heads, seq_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size, num_heads, head_dim, seq_length), | |
| layer_past[1].view(batch_size, num_heads, seq_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| def _convert_to_bloom_cache( | |
| past_key_value: Tuple[Tuple[torch.Tensor, torch.Tensor]] | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor]]: | |
| """ | |
| Converts the cache to the format expected by Bloom, i.e. to tuple(tuple([batch_size * num_heads, ...])) | |
| """ | |
| batch_size, num_heads, head_dim, seq_length = past_key_value[0][0].shape | |
| batch_size_times_num_heads = batch_size * num_heads | |
| # key: [batch_size, num_heads, head_dim, seq_length] -> [batch_size * num_heads, head_dim, seq_length] | |
| # value: [batch_size, num_heads, seq_length, head_dim] -> [batch_size * num_heads, seq_length, head_dim] | |
| return tuple( | |
| ( | |
| layer_past[0].view(batch_size_times_num_heads, head_dim, seq_length), | |
| layer_past[1].view(batch_size_times_num_heads, seq_length, head_dim), | |
| ) | |
| for layer_past in past_key_value | |
| ) | |
| BLOOM_START_DOCSTRING = r""" | |
| This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | |
| library implements for all its model (such as downloading or saving, resizing the input embeddings etc.) | |
| This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | |
| Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | |
| and behavior. | |
| Parameters: | |
| config ([`BloomConfig`]): Model configuration class with all the parameters of the model. | |
| Initializing with a config file does not load the weights associated with the model, only the | |
| configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. | |
| """ | |
| BLOOM_INPUTS_DOCSTRING = r""" | |
| Args: | |
| input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): | |
| `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]` | |
| (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. | |
| If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as | |
| `input_ids`. | |
| Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | |
| [`PreTrainedTokenizer.__call__`] for details. | |
| [What are input IDs?](../glossary#input-ids) | |
| past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`): | |
| Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see | |
| `past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have | |
| their past given to this model should not be passed as `input_ids` as they have already been computed. | |
| Each element of `past_key_values` is a tuple (past_key, past_value): | |
| - past_key: [batch_size * num_heads, head_dim, kv_length] | |
| - past_value: [batch_size * num_heads, kv_length, head_dim] | |
| attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | |
| - 1 for tokens that are **not masked**, | |
| - 0 for tokens that are **masked**. | |
| [What are attention masks?](../glossary#attention-mask) | |
| head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): | |
| Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: | |
| - 1 indicates the head is **not masked**, | |
| - 0 indicates the head is **masked**. | |
| inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | |
| Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | |
| is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | |
| model's internal embedding lookup matrix. | |
| If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see | |
| `past_key_values`). | |
| use_cache (`bool`, *optional*): | |
| If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | |
| `past_key_values`). | |
| output_attentions (`bool`, *optional*): | |
| Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | |
| tensors for more detail. | |
| output_hidden_states (`bool`, *optional*): | |
| Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | |
| more detail. | |
| return_dict (`bool`, *optional*): | |
| Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. | |
| """ | |
| class BloomModel(BloomPreTrainedModel): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__(config) | |
| self.embed_dim = config.hidden_size | |
| self.num_heads = config.n_head | |
| # Embedding + LN Embedding | |
| self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim) | |
| self.word_embeddings_layernorm = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| # Transformer blocks | |
| self.h = nn.ModuleList([BloomBlock(config) for _ in range(config.num_hidden_layers)]) | |
| # Final Layer Norm | |
| self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon) | |
| self.gradient_checkpointing = False | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def build_alibi_tensor(self, attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor: | |
| return build_alibi_tensor(attention_mask, num_heads, dtype) | |
| def get_input_embeddings(self): | |
| return self.word_embeddings | |
| def _prepare_attn_mask( | |
| self, attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int | |
| ) -> torch.BoolTensor: | |
| # create causal mask | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| combined_attention_mask = None | |
| device = attention_mask.device | |
| _, src_length = input_shape | |
| if src_length > 1: | |
| combined_attention_mask = _make_causal_mask( | |
| input_shape, device=device, past_key_values_length=past_key_values_length | |
| ) | |
| # [batch_size, seq_length] -> [batch_size, 1, tgt_length, src_length] | |
| expanded_attn_mask = _expand_mask(attention_mask, tgt_length=src_length) | |
| combined_attention_mask = ( | |
| expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask | |
| ) | |
| return combined_attention_mask | |
| def set_input_embeddings(self, new_embeddings: torch.Tensor): | |
| self.word_embeddings = new_embeddings | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.LongTensor] = None, | |
| inputs_embeds: Optional[torch.LongTensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
| " passing `position_ids`.", | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
| output_hidden_states = ( | |
| output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
| ) | |
| use_cache = use_cache if use_cache is not None else self.config.use_cache | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| if input_ids is not None and inputs_embeds is not None: | |
| raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
| elif input_ids is not None: | |
| batch_size, seq_length = input_ids.shape | |
| elif inputs_embeds is not None: | |
| batch_size, seq_length, _ = inputs_embeds.shape | |
| else: | |
| raise ValueError("You have to specify either input_ids or inputs_embeds") | |
| if past_key_values is None: | |
| past_key_values = tuple([None] * len(self.h)) | |
| # Prepare head mask if needed | |
| # 1.0 in head_mask indicate we keep the head | |
| # attention_probs has shape batch_size x num_heads x N x N | |
| # head_mask has shape n_layer x batch x num_heads x N x N | |
| head_mask = self.get_head_mask(head_mask, self.config.n_layer) | |
| if inputs_embeds is None: | |
| inputs_embeds = self.word_embeddings(input_ids) | |
| hidden_states = self.word_embeddings_layernorm(inputs_embeds) | |
| presents = () if use_cache else None | |
| all_self_attentions = () if output_attentions else None | |
| all_hidden_states = () if output_hidden_states else None | |
| if self.gradient_checkpointing and self.training: | |
| if use_cache: | |
| logger.warning_once( | |
| "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." | |
| ) | |
| use_cache = False | |
| # Compute alibi tensor: check build_alibi_tensor documentation | |
| seq_length_with_past = seq_length | |
| past_key_values_length = 0 | |
| if past_key_values[0] is not None: | |
| past_key_values_length = past_key_values[0][0].shape[2] | |
| seq_length_with_past = seq_length_with_past + past_key_values_length | |
| if attention_mask is None: | |
| attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) | |
| else: | |
| attention_mask = attention_mask.to(hidden_states.device) | |
| alibi = self.build_alibi_tensor(attention_mask, self.num_heads, dtype=hidden_states.dtype) | |
| causal_mask = self._prepare_attn_mask( | |
| attention_mask, | |
| input_shape=(batch_size, seq_length), | |
| past_key_values_length=past_key_values_length, | |
| ) | |
| for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)): | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if self.gradient_checkpointing and self.training: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| # None for past_key_value | |
| return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) | |
| return custom_forward | |
| outputs = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| alibi, | |
| causal_mask, | |
| layer_past, | |
| head_mask[i], | |
| ) | |
| else: | |
| outputs = block( | |
| hidden_states, | |
| layer_past=layer_past, | |
| attention_mask=causal_mask, | |
| head_mask=head_mask[i], | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| alibi=alibi, | |
| ) | |
| hidden_states = outputs[0] | |
| if use_cache is True: | |
| presents = presents + (outputs[1],) | |
| if output_attentions: | |
| all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],) | |
| # Add last hidden state | |
| hidden_states = self.ln_f(hidden_states) | |
| if output_hidden_states: | |
| all_hidden_states = all_hidden_states + (hidden_states,) | |
| if not return_dict: | |
| return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) | |
| return BaseModelOutputWithPastAndCrossAttentions( | |
| last_hidden_state=hidden_states, | |
| past_key_values=presents, | |
| hidden_states=all_hidden_states, | |
| attentions=all_self_attentions, | |
| ) | |
| class BloomForCausalLM(BloomPreTrainedModel): | |
| _tied_weights_keys = ["lm_head.weight"] | |
| def __init__(self, config: BloomConfig): | |
| super().__init__(config) | |
| self.transformer = BloomModel(config) | |
| self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def get_output_embeddings(self): | |
| return self.lm_head | |
| def set_output_embeddings(self, new_embeddings: torch.Tensor): | |
| self.lm_head = new_embeddings | |
| def prepare_inputs_for_generation( | |
| self, | |
| input_ids: torch.LongTensor, | |
| past_key_values: Optional[torch.Tensor] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| **kwargs, | |
| ) -> dict: | |
| # only last token for input_ids if past is not None | |
| if past_key_values: | |
| input_ids = input_ids[:, -1].unsqueeze(-1) | |
| # the cache may be in the stardard format (e.g. in contrastive search), convert to bloom's format if needed | |
| if past_key_values[0][0].shape[0] == input_ids.shape[0]: | |
| past_key_values = self._convert_to_bloom_cache(past_key_values) | |
| # if `inputs_embeds` are passed, we only want to use them in the 1st generation step | |
| if inputs_embeds is not None and past_key_values is None: | |
| model_inputs = {"inputs_embeds": inputs_embeds} | |
| else: | |
| model_inputs = {"input_ids": input_ids} | |
| model_inputs.update( | |
| { | |
| "past_key_values": past_key_values, | |
| "use_cache": kwargs.get("use_cache"), | |
| "attention_mask": attention_mask, | |
| } | |
| ) | |
| return model_inputs | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
| Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set | |
| `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` | |
| are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` | |
| """ | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
| " passing `position_ids`.", | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| lm_logits = self.lm_head(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(lm_logits.device) | |
| # Shift so that tokens < n predict n | |
| shift_logits = lm_logits[..., :-1, :].contiguous() | |
| shift_labels = labels[..., 1:].contiguous() | |
| batch_size, seq_length, vocab_size = shift_logits.shape | |
| # Flatten the tokens | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length) | |
| ) | |
| if not return_dict: | |
| output = (lm_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return CausalLMOutputWithCrossAttentions( | |
| loss=loss, | |
| logits=lm_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| def _reorder_cache( | |
| self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor | |
| ) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]: | |
| """ | |
| This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or | |
| [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct | |
| beam_idx at every generation step. | |
| Output shares the same memory storage as `past`. | |
| """ | |
| standardized_past = self._convert_to_standard_cache(past, batch_size=len(beam_idx)) | |
| # Get a copy of `beam_idx` on all the devices where we need those indices. | |
| device_to_beam_idx = { | |
| past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past | |
| } | |
| reordered_past = tuple( | |
| ( | |
| layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]), | |
| ) | |
| for layer_past in standardized_past | |
| ) | |
| return self._convert_to_bloom_cache(reordered_past) | |
| class BloomForSequenceClassification(BloomPreTrainedModel): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = BloomModel(config) | |
| self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
| " passing `position_ids`.", | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| logits = self.score(hidden_states) | |
| if input_ids is not None: | |
| batch_size = input_ids.shape[0] | |
| else: | |
| batch_size = inputs_embeds.shape[0] | |
| if self.config.pad_token_id is None and batch_size != 1: | |
| raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") | |
| if self.config.pad_token_id is None: | |
| sequence_lengths = -1 | |
| else: | |
| if input_ids is not None: | |
| sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) | |
| else: | |
| sequence_lengths = -1 | |
| logger.warning( | |
| f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " | |
| "unexpected if using padding tokens in conjunction with `inputs_embeds.`" | |
| ) | |
| pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] | |
| loss = None | |
| if labels is not None: | |
| if self.config.problem_type is None: | |
| if self.num_labels == 1: | |
| self.config.problem_type = "regression" | |
| elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): | |
| self.config.problem_type = "single_label_classification" | |
| else: | |
| self.config.problem_type = "multi_label_classification" | |
| if self.config.problem_type == "regression": | |
| loss_fct = MSELoss() | |
| if self.num_labels == 1: | |
| loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | |
| else: | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "single_label_classification": | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| elif self.config.problem_type == "multi_label_classification": | |
| loss_fct = BCEWithLogitsLoss() | |
| loss = loss_fct(pooled_logits, labels) | |
| if not return_dict: | |
| output = (pooled_logits,) + transformer_outputs[1:] | |
| return ((loss,) + output) if loss is not None else output | |
| return SequenceClassifierOutputWithPast( | |
| loss=loss, | |
| logits=pooled_logits, | |
| past_key_values=transformer_outputs.past_key_values, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| class BloomForTokenClassification(BloomPreTrainedModel): | |
| def __init__(self, config: BloomConfig): | |
| super().__init__(config) | |
| self.num_labels = config.num_labels | |
| self.transformer = BloomModel(config) | |
| if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None: | |
| classifier_dropout = config.classifier_dropout | |
| elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None: | |
| classifier_dropout = config.hidden_dropout | |
| else: | |
| classifier_dropout = 0.1 | |
| self.dropout = nn.Dropout(classifier_dropout) | |
| self.classifier = nn.Linear(config.hidden_size, config.num_labels) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| head_mask: Optional[torch.Tensor] = None, | |
| inputs_embeds: Optional[torch.Tensor] = None, | |
| labels: Optional[torch.Tensor] = None, | |
| use_cache: Optional[bool] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| **deprecated_arguments, | |
| ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: | |
| r""" | |
| labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., | |
| config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | |
| `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | |
| """ | |
| if deprecated_arguments.pop("position_ids", False) is not False: | |
| # `position_ids` could have been `torch.Tensor` or `None` so defaulting pop to `False` allows to detect if users were passing explicitly `None` | |
| warnings.warn( | |
| "`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. You can safely ignore" | |
| " passing `position_ids`.", | |
| FutureWarning, | |
| ) | |
| if len(deprecated_arguments) > 0: | |
| raise ValueError(f"Got unexpected arguments: {deprecated_arguments}") | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| transformer_outputs = self.transformer( | |
| input_ids, | |
| past_key_values=past_key_values, | |
| attention_mask=attention_mask, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| use_cache=use_cache, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| hidden_states = transformer_outputs[0] | |
| hidden_states = self.dropout(hidden_states) | |
| logits = self.classifier(hidden_states) | |
| loss = None | |
| if labels is not None: | |
| # move labels to correct device to enable model parallelism | |
| labels = labels.to(logits.device) | |
| batch_size, seq_length = labels.shape | |
| loss_fct = CrossEntropyLoss() | |
| loss = loss_fct( | |
| logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length) | |
| ) | |
| if not return_dict: | |
| output = (logits,) + transformer_outputs[2:] | |
| return ((loss,) + output) if loss is not None else output | |
| return TokenClassifierOutput( | |
| loss=loss, | |
| logits=logits, | |
| hidden_states=transformer_outputs.hidden_states, | |
| attentions=transformer_outputs.attentions, | |
| ) | |
| class BloomForQuestionAnswering(BloomPreTrainedModel): | |
| def __init__(self, config): | |
| super().__init__(config) | |
| self.transformer = BloomModel(config) | |
| self.qa_outputs = nn.Linear(config.hidden_size, 2) | |
| # Initialize weights and apply final processing | |
| self.post_init() | |
| def forward( | |
| self, | |
| input_ids: Optional[torch.LongTensor] = None, | |
| attention_mask: Optional[torch.FloatTensor] = None, | |
| position_ids: Optional[torch.LongTensor] = None, | |
| head_mask: Optional[torch.FloatTensor] = None, | |
| inputs_embeds: Optional[torch.FloatTensor] = None, | |
| start_positions: Optional[torch.LongTensor] = None, | |
| end_positions: Optional[torch.LongTensor] = None, | |
| output_attentions: Optional[bool] = None, | |
| output_hidden_states: Optional[bool] = None, | |
| return_dict: Optional[bool] = None, | |
| ) -> Union[Tuple, QuestionAnsweringModelOutput]: | |
| r""" | |
| start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the start of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | |
| Labels for position (index) of the end of the labelled span for computing the token classification loss. | |
| Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence | |
| are not taken into account for computing the loss. | |
| """ | |
| return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
| outputs = self.transformer( | |
| input_ids, | |
| attention_mask=attention_mask, | |
| position_ids=position_ids, | |
| head_mask=head_mask, | |
| inputs_embeds=inputs_embeds, | |
| output_attentions=output_attentions, | |
| output_hidden_states=output_hidden_states, | |
| return_dict=return_dict, | |
| ) | |
| sequence_output = outputs[0] | |
| logits = self.qa_outputs(sequence_output) | |
| start_logits, end_logits = logits.split(1, dim=-1) | |
| start_logits = start_logits.squeeze(-1).contiguous() | |
| end_logits = end_logits.squeeze(-1).contiguous() | |
| total_loss = None | |
| if start_positions is not None and end_positions is not None: | |
| # If we are on multi-GPU, split add a dimension | |
| if len(start_positions.size()) > 1: | |
| start_positions = start_positions.squeeze(-1) | |
| if len(end_positions.size()) > 1: | |
| end_positions = end_positions.squeeze(-1) | |
| # sometimes the start/end positions are outside our model inputs, we ignore these terms | |
| ignored_index = start_logits.size(1) | |
| start_positions = start_positions.clamp(0, ignored_index) | |
| end_positions = end_positions.clamp(0, ignored_index) | |
| loss_fct = CrossEntropyLoss(ignore_index=ignored_index) | |
| start_loss = loss_fct(start_logits, start_positions) | |
| end_loss = loss_fct(end_logits, end_positions) | |
| total_loss = (start_loss + end_loss) / 2 | |
| if not return_dict: | |
| output = (start_logits, end_logits) + outputs[2:] | |
| return ((total_loss,) + output) if total_loss is not None else output | |
| return QuestionAnsweringModelOutput( | |
| loss=total_loss, | |
| start_logits=start_logits, | |
| end_logits=end_logits, | |
| hidden_states=outputs.hidden_states, | |
| attentions=outputs.attentions, | |
| ) | |