File size: 9,970 Bytes
b3da277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import gradio as gr
import numpy as np
import cv2
from PIL import Image, ImageOps
import torch
from inference import SegmentPredictor, DepthPredictor
from utils import generate_PCL, PCL3, point_cloud


sam = SegmentPredictor()
sam_cpu = SegmentPredictor(device="cpu")
dpt = DepthPredictor()
red = (255, 0, 0)
blue = (0, 0, 255)
annos = []


block = gr.Blocks()
with block:
    # States
    def point_coords_empty():
        return []

    def point_labels_empty():
        return []

    image_edit_trigger = gr.State(True)
    point_coords = gr.State(point_coords_empty)
    point_labels = gr.State(point_labels_empty)
    masks = gr.State([])
    cutout_idx = gr.State(set())
    pred_masks = gr.State([])
    prompt_masks = gr.State([])
    embedding = gr.State()

    # UI
    with gr.Column():
        gr.Markdown(
            """# Segment Anything Model (SAM)
            ## a new AI model from Meta AI that can "cut out" any object, in any image, with a single click 🚀
            SAM is a promptable segmentation system with zero-shot generalization to unfamiliar objects and images, without the need for additional training. [**Official Project**](https://segment-anything.com/) [**Code**](https://github.com/facebookresearch/segment-anything).
            """
        )
        with gr.Row():
            with gr.Column():
                with gr.Tab("Upload Image"):
                    # mirror_webcam = False
                    upload_image = gr.Image(label="Input", type="pil", tool=None)
                with gr.Tab("Webcam"):
                    # mirror_webcam = False
                    input_image = gr.Image(
                        label="Input", type="pil", tool=None, source="webcam"
                    )
                with gr.Row():
                    sam_encode_btn = gr.Button("Encode", variant="primary")
                    sam_sgmt_everything_btn = gr.Button(
                        "Segment Everything!", variant="primary"
                    )
                # sam_encode_status = gr.Label('Not encoded yet')
        with gr.Row():
            prompt_image = gr.Image(label="Segments")
            # prompt_lbl_image = gr.AnnotatedImage(label='Segment Labels')
            lbl_image = gr.AnnotatedImage(label="Everything")
        with gr.Row():
            point_label_radio = gr.Radio(label="Point Label", choices=[1, 0], value=1)
            text = gr.Textbox(label="Mask Name")
            reset_btn = gr.Button("New Mask")
        selected_masks_image = gr.AnnotatedImage(label="Selected Masks")
        with gr.Row():
            with gr.Column():
                pcl_figure = gr.Model3D(
                    label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]
                )
                with gr.Row():
                    max_depth = gr.Slider(
                        minimum=0, maximum=10, value=3, step=0.01, label="Max Depth"
                    )
                    min_depth = gr.Slider(
                        minimum=0, maximum=10, step=0.01, value=1, label="Min Depth"
                    )
                    n_samples = gr.Slider(
                        minimum=1e3,
                        maximum=1e6,
                        step=1e3,
                        value=1e5,
                        label="Number of Samples",
                    )
                    cube_size = gr.Slider(
                        minimum=0.00001,
                        maximum=0.001,
                        step=0.000001,
                        default=0.00001,
                        label="Cube size",
                    )
                    depth_reconstruction_btn = gr.Button(
                        "3D Reconstruction", variant="primary"
                    )
                    depth_reconstruction_mask_btn = gr.Button(
                        "Mask Reconstruction", variant="primary"
                    )

                sam_decode_btn = gr.Button("Predict using points!", variant="primary")

    # components
    components = {
        point_coords,
        point_labels,
        image_edit_trigger,
        masks,
        cutout_idx,
        input_image,
        embedding,
        point_label_radio,
        text,
        reset_btn,
        sam_sgmt_everything_btn,
        sam_decode_btn,
        depth_reconstruction_btn,
        prompt_image,
        lbl_image,
        n_samples,
        max_depth,
        min_depth,
        cube_size,
        selected_masks_image,
    }

    def on_upload_image(input_image, upload_image):
        # Mirror because gradio.image webcam has mirror = True
        upload_image_mirror = ImageOps.mirror(upload_image)
        return [upload_image_mirror, upload_image]

    upload_image.upload(
        on_upload_image, [input_image, upload_image], [input_image, upload_image]
    )

    # event - init coords
    def on_reset_btn_click(input_image):
        return input_image, point_coords_empty(), point_labels_empty(), None, []

    reset_btn.click(
        on_reset_btn_click,
        [input_image],
        [prompt_image, point_coords, point_labels],
        queue=False,
    )

    def on_prompt_image_select(
        input_image,
        prompt_image,
        point_coords,
        point_labels,
        point_label_radio,
        text,
        pred_masks,
        embedding,
        evt: gr.SelectData,
    ):
        sam_cpu.dummy_encode(input_image)
        x, y = evt.index
        color = red if point_label_radio == 0 else blue
        if prompt_image is None:
            prompt_image = np.array(input_image.copy())

        cv2.circle(prompt_image, (x, y), 5, color, -1)
        point_coords.append([x, y])
        point_labels.append(point_label_radio)
        sam_masks = sam_cpu.cond_pred(
            pts=np.array(point_coords), lbls=np.array(point_labels), embedding=embedding
        )
        return [
            prompt_image,
            (input_image, sam_masks),
            point_coords,
            point_labels,
            sam_masks,
        ]

    prompt_image.select(
        on_prompt_image_select,
        [
            input_image,
            prompt_image,
            point_coords,
            point_labels,
            point_label_radio,
            text,
            pred_masks,
            embedding,
        ],
        [prompt_image, lbl_image, point_coords, point_labels, pred_masks],
        queue=True,
    )

    def on_everything_image_select(
        input_image, pred_masks, masks, text, evt: gr.SelectData
    ):
        i = evt.index
        mask = pred_masks[i][0]
        print(mask)
        print(type(mask))
        masks.append((mask, text))
        anno = (input_image, masks)
        return [masks, anno]

    lbl_image.select(
        on_everything_image_select,
        [input_image, pred_masks, masks, text],
        [masks, selected_masks_image],
        queue=False,
    )

    def on_selected_masks_image_select(input_image, masks, evt: gr.SelectData):
        i = evt.index
        del masks[i]
        anno = (input_image, masks)
        return [masks, anno]

    selected_masks_image.select(
        on_selected_masks_image_select,
        [input_image, masks],
        [masks, selected_masks_image],
        queue=False,
    )
    # prompt_lbl_image.select(on_everything_image_select,
    #                   [input_image, prompt_masks, masks, text],
    #                   [masks, selected_masks_image], queue=False)

    def on_click_sam_encode_btn(inputs):
        print("encoding")
        # encode image on click
        embedding = sam.encode(inputs[input_image]).cpu()
        sam_cpu.dummy_encode(inputs[input_image])
        print("encoding done")
        return [inputs[input_image], embedding]

    sam_encode_btn.click(
        on_click_sam_encode_btn, components, [prompt_image, embedding], queue=False
    )

    def on_click_sam_dencode_btn(inputs):
        print("inferencing")
        image = inputs[input_image]
        generated_mask, _, _ = sam.cond_pred(
            pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels])
        )
        inputs[masks].append((generated_mask, inputs[text]))
        print(inputs[masks][0])
        return {prompt_image: (image, inputs[masks])}

    sam_decode_btn.click(
        on_click_sam_dencode_btn,
        components,
        [prompt_image, masks, cutout_idx],
        queue=True,
    )

    def on_depth_reconstruction_btn_click(inputs):
        print("depth reconstruction")
        path = dpt.generate_obj_rgb(
            image=inputs[input_image],
            cube_size=inputs[cube_size],
            n_samples=inputs[n_samples],
            # masks=inputs[masks],
            min_depth=inputs[min_depth],
            max_depth=inputs[max_depth],
        )
        return {pcl_figure: path}

    depth_reconstruction_btn.click(
        on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False
    )

    def on_depth_reconstruction_mask_btn_click(inputs):
        print("depth reconstruction")
        path = dpt.generate_obj_masks2(
            image=inputs[input_image],
            cube_size=inputs[cube_size],
            n_samples=inputs[n_samples],
            masks=inputs[masks],
            min_depth=inputs[min_depth],
            max_depth=inputs[max_depth],
        )
        return {pcl_figure: path}

    depth_reconstruction_mask_btn.click(
        on_depth_reconstruction_mask_btn_click, components, [pcl_figure], queue=False
    )

    def on_sam_sgmt_everything_btn_click(inputs):
        print("segmenting everything")
        image = inputs[input_image]
        sam_masks = sam.segment_everything(image)
        print(image)
        print(sam_masks)
        return [(image, sam_masks), sam_masks]

    sam_sgmt_everything_btn.click(
        on_sam_sgmt_everything_btn_click,
        components,
        [lbl_image, pred_masks],
        queue=True,
    )


if __name__ == "__main__":
    block.queue()
    block.launch(auth=("novouser", "bstad2023"))