import numpy as np import open3d as o3d import open3d as o3d import plotly.express as px import numpy as np import pandas as pd from inference import DepthPredictor import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def create_3d_obj(rgb_image, depth_image, depth=10, path='./image.gltf'): depth_o3d = o3d.geometry.Image(depth_image) image_o3d = o3d.geometry.Image(rgb_image) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( image_o3d, depth_o3d, convert_rgb_to_intensity=False) w = int(depth_image.shape[1]) h = int(depth_image.shape[0]) camera_intrinsic = o3d.camera.PinholeCameraIntrinsic() camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2) pcd = o3d.geometry.PointCloud.create_from_rgbd_image( rgbd_image, camera_intrinsic) print('normals') pcd.normals = o3d.utility.Vector3dVector( np.zeros((1, 3))) # invalidate existing normals pcd.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) pcd.orient_normals_towards_camera_location( camera_location=np.array([0., 0., 1000.])) pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) pcd.transform([[-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) print('run Poisson surface reconstruction') with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson( pcd, depth=depth, width=0, scale=1.1, linear_fit=True) voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256 print(f'voxel_size = {voxel_size:e}') mesh = mesh_raw.simplify_vertex_clustering( voxel_size=voxel_size, contraction=o3d.geometry.SimplificationContraction.Average) # vertices_to_remove = densities < np.quantile(densities, 0.001) # mesh.remove_vertices_by_mask(vertices_to_remove) bbox = pcd.get_axis_aligned_bounding_box() mesh_crop = mesh.crop(bbox) gltf_path = path o3d.io.write_triangle_mesh( gltf_path, mesh_crop, write_triangle_uvs=True) return gltf_path def create_3d_pc(rgb_image, depth_image, depth=10): depth_image = depth_image.astype(np.float32) # Convert depth map to float32 depth_o3d = o3d.geometry.Image(depth_image) image_o3d = o3d.geometry.Image(rgb_image) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth( image_o3d, depth_o3d, convert_rgb_to_intensity=False) w = int(depth_image.shape[1]) h = int(depth_image.shape[0]) # Specify camera intrinsic parameters (modify based on actual camera) fx = 500 fy = 500 cx = w / 2 cy = h / 2 camera_intrinsic = o3d.camera.PinholeCameraIntrinsic(w, h, fx, fy, cx, cy) pcd = o3d.geometry.PointCloud.create_from_rgbd_image( rgbd_image, camera_intrinsic) print('Estimating normals...') pcd.estimate_normals( search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) pcd.orient_normals_towards_camera_location( camera_location=np.array([0., 0., 1000.])) # Save the point cloud as a PLY file filename = "pc.pcd" o3d.io.write_point_cloud(filename, pcd) return filename # Return the file path where the PLY file is saved def point_cloud(rgb_image): depth_predictor = DepthPredictor() depth_result = depth_predictor.predict(rgb_image) # Step 2: Create an RGBD image from the RGB and depth image depth_o3d = o3d.geometry.Image(depth_image) image_o3d = o3d.geometry.Image(rgb_image) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False) # Step 3: Create a PointCloud from the RGBD image pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)) # Step 4: Convert PointCloud data to a NumPy array points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) # Step 5: Create a DataFrame from the NumPy arrays data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2], 'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]} df = pd.DataFrame(data) size = np.zeros(len(df)) size[:] = 0.01 # Step 6: Create a 3D scatter plot using Plotly Express fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size) return fig def array_PCL(rgb_image, depth_image): FX_RGB = 5.1885790117450188e+02 FY_RGB = 5.1946961112127485e+02 CX_RGB = 3.2558244941119034e+0 CY_RGB = 2.5373616633400465e+02 FX_DEPTH = FX_RGB FY_DEPTH = FY_RGB CX_DEPTH = CX_RGB CY_DEPTH = CY_RGB height = depth_image.shape[0] width = depth_image.shape[1] # compute indices: jj = np.tile(range(width), height) ii = np.repeat(range(height), width) # Compute constants: xx = (jj - CX_DEPTH) / FX_DEPTH yy = (ii - CY_DEPTH) / FY_DEPTH # transform depth image to vector of z: length = height * width z = depth_image.reshape(length) # compute point cloud pcd = np.dstack((xx * z, yy * z, z)).reshape((length, 3)) #cam_RGB = np.apply_along_axis(np.linalg.inv(R).dot, 1, pcd) - np.linalg.inv(R).dot(T) xx_rgb = ((rgb_image[:, 0] * FX_RGB) / rgb_image[:, 2] + CX_RGB + width / 2).astype(int).clip(0, width - 1) yy_rgb = ((rgb_image[:, 1] * FY_RGB) / rgb_image[:, 2] + CY_RGB).astype(int).clip(0, height - 1) #colors = rgb_image[yy_rgb, xx_rgb]/255 return pcd#, colors def generate_PCL(image): depth_predictor = DepthPredictor() depth_result = depth_predictor.predict(image) image = np.array(image) pcd = array_PCL(image, depth_result) fig = px.scatter_3d(x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], size_max=0.01) return fig def plot_PCL(rgb_image, depth_image): pcd, colors = array_PCL(rgb_image, depth_image) fig = px.scatter_3d(x=pcd[:, 0], y=pcd[:, 1], z=pcd[:, 2], color=colors, size_max=0.1) return fig def PCL3(image): depth_predictor = DepthPredictor() depth_result = depth_predictor.predict(image) image = np.array(image) # Step 2: Create an RGBD image from the RGB and depth image depth_o3d = o3d.geometry.Image(depth_result) image_o3d = o3d.geometry.Image(image) rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False) # Step 3: Create a PointCloud from the RGBD image pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault)) # Step 4: Convert PointCloud data to a NumPy array vis = o3d.visualization.Visualizer() vis.add_geometry(pcd) # Step 4: Convert PointCloud data to a NumPy array points = np.asarray(pcd.points) colors = np.asarray(pcd.colors) sizes = np.zeros(colors.shape) sizes[:] = 0.01 colors = [tuple(c) for c in colors] fig = plt.figure() #ax = fig.add_subplot(111, projection='3d') ax = Axes3D(fig) print("plotting...") ax.scatter(points[:, 0], points[:, 1], points[:, 2], c=colors, s=0.01) print("Plot Succesful") #data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2], 'sizes': sizes[:, 0]} #df = pd.DataFrame(data) # Step 6: Create a 3D scatter plot using Plotly Express #fig = px.scatter_3d(df, x='x', y='y', z='z', color=colors, size="sizes") return fig import numpy as np def map_image_range(image, min_value, max_value): """ Maps the values of a numpy image array to a specified range. Args: image (numpy.ndarray): Input image array with values ranging from 0 to 1. min_value (float): Minimum value of the new range. max_value (float): Maximum value of the new range. Returns: numpy.ndarray: Image array with values mapped to the specified range. """ # Ensure the input image is a numpy array if not isinstance(image, np.ndarray): raise ValueError("Input image must be a numpy array.") # Ensure the image values are within the valid range (0 to 1) if not (0 <= np.min(image) <= 1) or not (0 <= np.max(image) <= 1): raise ValueError("Input image values must be in the range [0, 1].") # Map the values to the specified range mapped_image = (image - 0) * (max_value - min_value) / (1 - 0) + min_value return mapped_image