import gradio as gr from segment_anything import SamAutomaticMaskGenerator, sam_model_registry import supervision as sv from inference import DepthPredictor, SegmentPredictor from utils import create_3d_obj, create_3d_pc, point_cloud import numpy as np def produce_depth_map(image): depth_predictor = DepthPredictor() depth_result = depth_predictor.predict(image) return depth_result def produce_segmentation_map(image): segment_predictor = SegmentPredictor() sam_result = segment_predictor.predict(image) return sam_result def produce_3d_reconstruction(image): depth_predictor = DepthPredictor() depth_result = depth_predictor.predict(image) rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf') return rgb_gltf_path def produce_point_cloud(depth_map, segmentation_map): return point_cloud(np.array(segmentation_map), depth_map) def snap(image, depth_map, segmentation_map, point_cloud, video): if depth_map: depth_result = produce_depth_map(image) else: depth_result = None if segmentation_map: sam_result = produce_segmentation_map(image) else: sam_result = None if point_cloud: point_cloud_fig = produce_point_cloud(depth_result, sam_result) else: point_cloud_fig = None if video: # Add video processing here if needed pass return [image, depth_result, sam_result, point_cloud_fig] # Interface inputs image_input = gr.Image(source="webcam", tool=None, label="Input Image", type="pil") depth_map_button = gr.Button(label="Produce Depth Map", value=False) segmentation_map_button = gr.Button(label="Produce Segmentation Map", value=False) point_cloud_button = gr.Button(label="Produce Point Cloud", value=False) video_input = gr.Video(source="webcam") # Interface outputs output_image = gr.Image(label="RGB") output_depth_map = gr.Image(label="Predicted Depth") output_segmentation_map = gr.Image(label="Predicted Segmentation") output_point_cloud = gr.Plot(label="Point Cloud") # Interface demo = gr.Interface( snap, inputs=[image_input, depth_map_button, segmentation_map_button, point_cloud_button, video_input], outputs=[output_image, output_depth_map, output_segmentation_map, None, output_point_cloud] ) if __name__ == "__main__": demo.launch()