import os import gradio as gr import numpy as np import cv2 from PIL import Image import torch from inference import SegmentPredictor, DepthPredictor from utils import generate_PCL, PCL3, point_cloud sam = SegmentPredictor() dpt = DepthPredictor() red = (255,0,0) blue = (0,0,255) annos = [] block = gr.Blocks() with block: # States def point_coords_empty(): return [] def point_labels_empty(): return [] image_edit_trigger = gr.State(True) point_coords = gr.State(point_coords_empty) point_labels = gr.State(point_labels_empty) masks = gr.State([]) cutout_idx = gr.State(set()) # UI with gr.Column(): with gr.Row(): with gr.Column(): input_image = gr.Image(label='Input', type='pil', tool=None) # mirror_webcam = False sam_encode_btn = gr.Button('Encode', variant='primary') sam_encode_status = gr.Label('Not encoded yet') with gr.Row(): with gr.Tab("Select with points"): with gr.Column(): prompt_image = gr.Image(label='Segments') prompt_lbl_image = gr.AnnotatedImage(label='Segment Labels') with gr.Tab("Select from segmented map"): everything_image = gr.AnnotatedImage(label='Everything') with gr.Row(): with gr.Column(): pcl_figure = gr.Model3D(label="3-D Reconstruction", clear_color=[1.0, 1.0, 1.0, 1.0]) with gr.Row(): n_samples = gr.Slider(minimum=1e3, maximum=1e6, step=1e3, default=1e3, label='Number of Samples') cube_size = gr.Slider(minimum=0.000001, maximum=0.001, step=0.000001, default=0.00001, label='Cube size') with gr.Row(): with gr.Column(scale=1): with gr.Row(): point_label_radio = gr.Radio(label='Point Label', choices=[1,0], value=1) text = gr.Textbox(label='Mask Name') reset_btn = gr.Button('New Mask') sam_sgmt_everything_btn = gr.Button('Segment Everything!', variant = 'primary') sam_decode_btn = gr.Button('Predict using points!', variant = 'primary') depth_reconstruction_btn = gr.Button('Depth Reconstruction', variant = 'primary') # components components = {point_coords, point_labels, image_edit_trigger, masks, cutout_idx, input_image, point_label_radio, text, reset_btn, sam_sgmt_everything_btn, sam_decode_btn, depth_reconstruction_btn, prompt_image, n_samples, cube_size} # event - init coords def on_reset_btn_click(input_image): return input_image, point_coords_empty(), point_labels_empty(), None, [] reset_btn.click(on_reset_btn_click, [input_image], [input_image, point_coords, point_labels], queue=False) def on_input_image_upload(input_image): print("encoding") # encode image on upload sam.encode(input_image) print("encoding done") return input_image, point_coords_empty(), point_labels_empty(), None input_image.upload(on_input_image_upload, [input_image], [input_image, point_coords, point_labels], queue=False) # event - set coords def on_prompt_image_select(input_image, prompt, point_coords, point_labels, point_label_radio, evt: gr.SelectData): x, y = evt.index color = red if point_label_radio == 0 else blue if prompt is None: prompt = np.array(input_image.copy()) cv2.circle(prompt, (x, y), 5, color, -1) point_coords.append([x,y]) point_labels.append(point_label_radio) generated_mask, _, _ = sam.cond_pred(pts=np.array(point_coords), lbls=np.array(point_labels)) return [ prompt, (input_image, [(generated_mask, "Mask")]), point_coords, point_labels ] prompt_image.select(on_prompt_image_select, [input_image, point_coords, point_labels, point_label_radio], [prompt_image, prompt_lbl_image, point_coords, point_labels], queue=False) def on_click_sam_encode_btn(inputs): print("encoding") # encode image on click sam.encode(inputs[input_image]) print("encoding done") return {sam_encode_status: 'Image Encoded!', prompt_image: inputs[input_image]} sam_encode_btn.click(on_click_sam_encode_btn, components, [sam_encode_status, prompt_image], queue=False) def on_click_sam_dencode_btn(inputs): print("inferencing") image = inputs[input_image] generated_mask, _, _ = sam.cond_pred(pts=np.array(inputs[point_coords]), lbls=np.array(inputs[point_labels])) inputs[masks].append((generated_mask, inputs[text])) print(inputs[masks][0]) return {prompt_image: (image, inputs[masks])} sam_decode_btn.click(on_click_sam_dencode_btn, components, [prompt_image, masks, cutout_idx], queue=True) def on_depth_reconstruction_btn_click(inputs): print("depth reconstruction") image = inputs[input_image] path = dpt.generate_obj_masks(image=image, n_samples=inputs[n_samples], cube_size=inputs[cube_size], masks=inputs[masks]) return {pcl_figure: path} depth_reconstruction_btn.click(on_depth_reconstruction_btn_click, components, [pcl_figure], queue=False) if __name__ == '__main__': block.queue() block.launch()