File size: 1,198 Bytes
5c0b534
9b4ee8f
 
6b8e3c4
a979122
7598e8a
5c0b534
 
 
6b8e3c4
9780d7b
c1883e2
 
 
 
a979122
c1883e2
a979122
5c0b534
 
 
 
f465c1d
b5815d9
344f858
 
 
c1883e2
 
a979122
5c0b534
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import supervision as sv
from inference import DepthPredictor, SegmentPredictor
from utils import create_3d_obj, create_3d_pc, point_cloud
import numpy as np


def snap(image, video):
    depth_predictor = DepthPredictor()
    depth_result = depth_predictor.predict(image)
    rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
    
    segment_predictor = SegmentPredictor()
    sam_result = segment_predictor.predict(image)
    fig = point_cloud(np.array(sam_result), depth_result)

    return [image, depth_result, sam_result, rgb_gltf_path, fig]#[depth_result, gltf_path, gltf_path]


demo = gr.Interface(
    snap,
    inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
            gr.Video(source="webcam")],
    outputs=[gr.Image(label="RGB"),
             gr.Image(label="predicted depth"),
             gr.Image(label="predicted segmentation"),
             gr.Model3D(label="3D mesh reconstruction - RGB",
                        clear_color=[1.0, 1.0, 1.0, 1.0]),
             gr.Plot()]
)

if __name__ == "__main__":
    demo.launch()