Spaces:
Runtime error
Runtime error
File size: 1,198 Bytes
5c0b534 9b4ee8f 6b8e3c4 a979122 7598e8a 5c0b534 6b8e3c4 9780d7b c1883e2 a979122 c1883e2 a979122 5c0b534 f465c1d b5815d9 344f858 c1883e2 a979122 5c0b534 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
import supervision as sv
from inference import DepthPredictor, SegmentPredictor
from utils import create_3d_obj, create_3d_pc, point_cloud
import numpy as np
def snap(image, video):
depth_predictor = DepthPredictor()
depth_result = depth_predictor.predict(image)
rgb_gltf_path = create_3d_obj(np.array(image), depth_result, path='./rgb.gltf')
segment_predictor = SegmentPredictor()
sam_result = segment_predictor.predict(image)
fig = point_cloud(np.array(sam_result), depth_result)
return [image, depth_result, sam_result, rgb_gltf_path, fig]#[depth_result, gltf_path, gltf_path]
demo = gr.Interface(
snap,
inputs=[gr.Image(source="webcam", tool=None, label="Input Image", type="pil"),
gr.Video(source="webcam")],
outputs=[gr.Image(label="RGB"),
gr.Image(label="predicted depth"),
gr.Image(label="predicted segmentation"),
gr.Model3D(label="3D mesh reconstruction - RGB",
clear_color=[1.0, 1.0, 1.0, 1.0]),
gr.Plot()]
)
if __name__ == "__main__":
demo.launch() |