Spaces:
Runtime error
Runtime error
File size: 8,676 Bytes
6b8e3c4 077fc91 6b8e3c4 01bc85d 2f74de8 2a1828c daeee36 76993d9 15a3702 daeee36 0457b5c daeee36 15a3702 55bcfca 15a3702 daeee36 6b8e3c4 9780d7b 1d564b4 6b8e3c4 077fc91 6b8e3c4 9780d7b 6b8e3c4 9780d7b 6b8e3c4 9780d7b 2a1828c 62a1e0a de13e02 9780d7b 01bc85d 2d80e04 c09fa67 ca166b1 01bc85d 801d890 01bc85d ca166b1 01bc85d 2f74de8 effc523 706546d effc523 313008d effc523 2911be1 effc523 706546d 313008d effc523 01bc85d 706546d ca166b1 706546d 7d22d48 706546d 01bc85d 2a1828c d2d76c9 2a1828c d2d76c9 2a1828c d2d76c9 6b8e3c4 67eca52 6b8e3c4 b66242e 6b8e3c4 077fc91 6b8e3c4 077fc91 6b8e3c4 077fc91 fea2110 077fc91 c93bd34 711582a 43dcd18 711582a 077fc91 f465c1d 6b8e3c4 c810b3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from transformers import DPTImageProcessor, DPTForDepthEstimation
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
import gradio as gr
import supervision as sv
import torch
import numpy as np
from PIL import Image
import requests
import open3d as o3d
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from utils import map_image_range
def PCL(mask, depth):
assert mask.shape == depth.shape
assert type(mask) == np.ndarray
assert type(depth) == np.ndarray
rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
rgb_mask[mask] = (255, 0, 0)
print
depth_o3d = o3d.geometry.Image(depth)
image_o3d = o3d.geometry.Image(rgb_mask)
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
print(np.unique(colors, axis=0))
print(np.unique(colors, axis=1))
print(np.unique(colors))
mask = (colors[:, 0] == 1.)
print(mask.sum())
print(colors.shape)
points = points[mask]
colors = colors[mask]
return points, colors
class DepthPredictor:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
self.model.eval()
def predict(self, image):
# prepare image for the model
encoding = self.feature_extractor(image, return_tensors="pt")
# forward pass
with torch.no_grad():
outputs = self.model(**encoding)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
).squeeze()
output = 1 - (prediction.cpu().numpy() / np.max(output))
#formatted = 255 - (output * 255 / np.max(output)).astype('uint8')
#img = Image.fromarray(formatted)
return output
def generate_pcl(self, image):
print(np.array(image).shape)
depth = self.predict(image)
print(depth.shape)
# Step 2: Create an RGBD image from the RGB and depth image
depth_o3d = o3d.geometry.Image(depth)
image_o3d = o3d.geometry.Image(np.array(image))
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
# Step 3: Create a PointCloud from the RGBD image
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
# Step 4: Convert PointCloud data to a NumPy array
points = np.asarray(pcd.points)
colors = np.asarray(pcd.colors)
print(points.shape, colors.shape)
return points, colors
def generate_fig(self, image):
points, colors = self.generate_pcl(image)
data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
df = pd.DataFrame(data)
size = np.zeros(len(df))
size[:] = 0.01
# Step 6: Create a 3D scatter plot using Plotly Express
fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size)
return fig
def generate_fig2(self, image):
points, colors = self.generate_pcl(image)
# Step 6: Create a 3D scatter plot using Plotly Express
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.scatter(points,size=0.01, c=colors, marker='o')
return fig
def generate_obj_rgb(self, image, n_samples, cube_size):
# Step 1: Create a point cloud
point_cloud, color_array = self.generate_pcl(image)
#point_cloud, color_array = point_cloud[mask.ravel()[:-1]], color_array[mask.ravel()[:-1]]
# sample 1000 points
idxs = np.random.choice(len(point_cloud), int(n_samples))
point_cloud = point_cloud[idxs]
color_array = color_array[idxs]
# Create a mesh to hold the colored cubes
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
for point, color in zip(point_cloud, color_array):
cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
cube.translate(-point)
cube.paint_uniform_color(color)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
def generate_obj_masks(self, image, n_samples, masks, cube_size):
# Generate a point cloud
point_cloud, color_array = self.generate_pcl(image)
print(point_cloud.shape)
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
cs = [(255,0,0),(0,255,0),(0,0,255)]
for c,(mask, _) in zip(cs, masks):
mask = mask.ravel()
point_cloud_subset, color_array_subset = point_cloud[mask], color_array[mask]
idxs = np.random.choice(len(point_cloud_subset), int(n_samples))
point_cloud_subset = point_cloud_subset[idxs]
for point in point_cloud_subset:
cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
cube.translate(-point)
cube.paint_uniform_color(c)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
def generate_obj_masks2(self, image, masks, cube_size, n_samples, min_depth, max_depth):
# Generate a point cloud
depth = self.predict(image)
depth = map_image_range(depth, min_depth, max_depth)
image = np.array(image)
mesh = o3d.geometry.TriangleMesh()
# Create cubes and add them to the mesh
cs = [(255,0,0),(0,255,0),(0,0,255)]
for c,(mask, _) in zip(cs, masks):
points, _ = PCL(mask, depth)
idxs = np.random.choice(len(points), int(n_samples))
points = points[idxs]
for point in points:
cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
cube.translate(-point)
cube.paint_uniform_color(c)
mesh += cube
# Save the mesh to an .obj file
output_file = "./cloud.obj"
o3d.io.write_triangle_mesh(output_file, mesh)
return output_file
class SegmentPredictor:
def __init__(self):
MODEL_TYPE = "vit_h"
checkpoint = "sam_vit_h_4b8939.pth"
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint)
# Select device
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
sam.to(device=self.device)
self.mask_generator = SamAutomaticMaskGenerator(sam)
self.conditioned_pred = SamPredictor(sam)
def encode(self, image):
image = np.array(image)
self.conditioned_pred.set_image(image)
def cond_pred(self, pts, lbls):
lbls = np.array(lbls)
pts = np.array(pts)
masks, _, _ = self.conditioned_pred.predict(
point_coords=pts,
point_labels=lbls,
multimask_output=True
)
idxs = np.argsort(-masks.sum(axis=(1,2)))
sam_masks = []
for n,i in enumerate(idxs):
sam_masks.append((masks[i], str(n)))
return sam_masks
def segment_everything(self, image):
image = np.array(image)
sam_result = self.mask_generator.generate(image)
sam_masks = []
for i,mask in enumerate(sam_result):
sam_masks.append((mask["segmentation"], str(i)))
return sam_masks |