File size: 8,676 Bytes
6b8e3c4
077fc91
6b8e3c4
 
 
 
 
 
01bc85d
 
 
2f74de8
2a1828c
daeee36
 
 
 
 
 
 
76993d9
 
15a3702
daeee36
0457b5c
daeee36
 
 
 
 
 
15a3702
 
 
55bcfca
15a3702
 
daeee36
 
 
6b8e3c4
 
 
 
9780d7b
1d564b4
6b8e3c4
077fc91
6b8e3c4
 
9780d7b
 
6b8e3c4
9780d7b
6b8e3c4
9780d7b
 
 
 
 
 
 
 
2a1828c
 
62a1e0a
de13e02
9780d7b
01bc85d
2d80e04
c09fa67
ca166b1
01bc85d
 
801d890
01bc85d
 
 
 
 
 
ca166b1
01bc85d
 
 
 
 
 
 
 
 
 
 
 
2f74de8
 
 
 
 
 
 
 
effc523
706546d
effc523
 
313008d
effc523
2911be1
effc523
 
 
 
 
 
706546d
313008d
effc523
 
 
 
 
 
01bc85d
706546d
 
 
ca166b1
706546d
 
 
 
7d22d48
706546d
 
 
 
 
 
 
 
 
 
 
 
01bc85d
2a1828c
d2d76c9
 
2a1828c
d2d76c9
 
 
 
 
 
2a1828c
 
d2d76c9
 
 
 
 
 
 
 
 
 
6b8e3c4
 
 
67eca52
6b8e3c4
b66242e
 
6b8e3c4
077fc91
 
 
6b8e3c4
077fc91
6b8e3c4
077fc91
 
 
 
 
fea2110
 
077fc91
 
 
 
 
c93bd34
711582a
43dcd18
 
711582a
077fc91
 
 
f465c1d
6b8e3c4
c810b3c
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from transformers import DPTImageProcessor, DPTForDepthEstimation
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry, SamPredictor
import gradio as gr
import supervision as sv
import torch
import numpy as np
from PIL import Image
import requests
import open3d as o3d
import pandas as pd
import plotly.express as px
import matplotlib.pyplot as plt
from utils import map_image_range



def PCL(mask, depth):
    assert mask.shape == depth.shape
    assert type(mask) == np.ndarray
    assert type(depth) == np.ndarray
    rgb_mask = np.zeros((mask.shape[0], mask.shape[1], 3)).astype("uint8")
    rgb_mask[mask] = (255, 0, 0)
    print
    depth_o3d = o3d.geometry.Image(depth)
    image_o3d = o3d.geometry.Image(rgb_mask)
    rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
    # Step 3: Create a PointCloud from the RGBD image
    pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
    # Step 4: Convert PointCloud data to a NumPy array
    points = np.asarray(pcd.points)
    colors = np.asarray(pcd.colors)
    print(np.unique(colors, axis=0))
    print(np.unique(colors, axis=1))
    print(np.unique(colors))
    mask = (colors[:, 0] == 1.)
    print(mask.sum())
    print(colors.shape)
    points = points[mask]
    colors = colors[mask]
    return points, colors

class DepthPredictor:
    def __init__(self):
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
        self.model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
        self.model.eval()
    
    def predict(self, image):
        # prepare image for the model
        encoding = self.feature_extractor(image, return_tensors="pt")
        # forward pass
        with torch.no_grad():
            outputs = self.model(**encoding)
            predicted_depth = outputs.predicted_depth
            # interpolate to original size
            prediction = torch.nn.functional.interpolate(
                                predicted_depth.unsqueeze(1),
                                size=image.size[::-1],
                                mode="bicubic",
                                align_corners=False,
                        ).squeeze()
            
        output = 1 - (prediction.cpu().numpy() / np.max(output))
        #formatted = 255 - (output * 255 / np.max(output)).astype('uint8')
        #img = Image.fromarray(formatted)
        return output
    
    def generate_pcl(self, image):
        print(np.array(image).shape)
        depth = self.predict(image)
        print(depth.shape)
        # Step 2: Create an RGBD image from the RGB and depth image
        depth_o3d = o3d.geometry.Image(depth)
        image_o3d = o3d.geometry.Image(np.array(image))
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(image_o3d, depth_o3d, convert_rgb_to_intensity=False)
        # Step 3: Create a PointCloud from the RGBD image
        pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd_image, o3d.camera.PinholeCameraIntrinsic(o3d.camera.PinholeCameraIntrinsicParameters.PrimeSenseDefault))
        # Step 4: Convert PointCloud data to a NumPy array
        points = np.asarray(pcd.points)
        colors = np.asarray(pcd.colors)
        print(points.shape, colors.shape)
        return points, colors
    
    def generate_fig(self, image):
        points, colors = self.generate_pcl(image)
        data = {'x': points[:, 0], 'y': points[:, 1], 'z': points[:, 2],
            'red': colors[:, 0], 'green': colors[:, 1], 'blue': colors[:, 2]}
        df = pd.DataFrame(data)
        size = np.zeros(len(df))
        size[:] = 0.01
        # Step 6: Create a 3D scatter plot using Plotly Express
        fig = px.scatter_3d(df, x='x', y='y', z='z', color='red', size=size)
        return fig
     
    def generate_fig2(self, image):
        points, colors = self.generate_pcl(image)
        # Step 6: Create a 3D scatter plot using Plotly Express
        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')
        ax.scatter(points,size=0.01, c=colors, marker='o')
        return fig
    
    def generate_obj_rgb(self, image, n_samples, cube_size):
        # Step 1: Create a point cloud
        point_cloud, color_array = self.generate_pcl(image)
        #point_cloud, color_array = point_cloud[mask.ravel()[:-1]], color_array[mask.ravel()[:-1]]
        # sample 1000 points
        idxs = np.random.choice(len(point_cloud), int(n_samples))
        point_cloud = point_cloud[idxs]
        color_array = color_array[idxs]
        # Create a mesh to hold the colored cubes
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        for point, color in zip(point_cloud, color_array):
            cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
            cube.translate(-point)
            cube.paint_uniform_color(color)
            mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file

    def generate_obj_masks(self, image, n_samples, masks, cube_size):
        # Generate a point cloud
        point_cloud, color_array = self.generate_pcl(image)
        print(point_cloud.shape)
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        cs = [(255,0,0),(0,255,0),(0,0,255)]
        for c,(mask, _) in zip(cs, masks):
            mask = mask.ravel()
            point_cloud_subset, color_array_subset = point_cloud[mask], color_array[mask]
            idxs = np.random.choice(len(point_cloud_subset), int(n_samples))
            point_cloud_subset = point_cloud_subset[idxs]
            for point in point_cloud_subset:
                cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
                cube.translate(-point)
                cube.paint_uniform_color(c)
                mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file
    
    def generate_obj_masks2(self, image, masks, cube_size, n_samples, min_depth, max_depth):
        # Generate a point cloud
        depth = self.predict(image)
        depth = map_image_range(depth, min_depth, max_depth)
        image = np.array(image)
        mesh = o3d.geometry.TriangleMesh()
        # Create cubes and add them to the mesh
        cs = [(255,0,0),(0,255,0),(0,0,255)]
        for c,(mask, _) in zip(cs, masks):
            points, _ = PCL(mask, depth)
            idxs = np.random.choice(len(points), int(n_samples))
            points = points[idxs]
            for point in points:
                cube = o3d.geometry.TriangleMesh.create_box(width=cube_size, height=cube_size, depth=cube_size)
                cube.translate(-point)
                cube.paint_uniform_color(c)
                mesh += cube
        # Save the mesh to an .obj file
        output_file = "./cloud.obj"
        o3d.io.write_triangle_mesh(output_file, mesh)
        return output_file
    



class SegmentPredictor:
    def __init__(self):
        MODEL_TYPE = "vit_h"
        checkpoint = "sam_vit_h_4b8939.pth"
        sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint)
        # Select device
        self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
        sam.to(device=self.device)
        self.mask_generator = SamAutomaticMaskGenerator(sam)
        self.conditioned_pred = SamPredictor(sam)
    
    def encode(self, image):
        image = np.array(image)
        self.conditioned_pred.set_image(image)
    
    def cond_pred(self, pts, lbls):
        lbls = np.array(lbls)
        pts = np.array(pts)
        masks, _, _ = self.conditioned_pred.predict(
            point_coords=pts,
            point_labels=lbls,
            multimask_output=True
            )
        idxs = np.argsort(-masks.sum(axis=(1,2)))
        sam_masks = []
        for n,i in enumerate(idxs):
            sam_masks.append((masks[i], str(n)))
        return sam_masks


    def segment_everything(self, image):
        image = np.array(image)
        sam_result = self.mask_generator.generate(image)
        sam_masks = []
        for i,mask in enumerate(sam_result):
            sam_masks.append((mask["segmentation"], str(i)))
        return sam_masks