import requests | |
import gradio as gr | |
from ragatouille import RAGPretrainedModel | |
import logging | |
from pathlib import Path | |
from time import perf_counter | |
from sentence_transformers import CrossEncoder | |
from huggingface_hub import InferenceClient | |
from jinja2 import Environment, FileSystemLoader | |
import numpy as np | |
from os import getenv | |
from backend.query_llm import generate_hf, generate_openai | |
from backend.semantic_search import table, retriever | |
from huggingface_hub import InferenceClient | |
# Bhashini API translation function | |
api_key = getenv('API_KEY') | |
user_id = getenv('USER_ID') | |
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
"""Translates text from source language to target language using the Bhashini API.""" | |
print(f'Starting translation process from {from_code} to {to_code}...') | |
gr.Warning(f'Translating to {to_code}...') | |
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
headers = { | |
"Content-Type": "application/json", | |
"userID": user_id, | |
"ulcaApiKey": api_key | |
} | |
payload = { | |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
} | |
print('Sending initial request to get the pipeline...') | |
response = requests.post(url, json=payload, headers=headers) | |
if response.status_code != 200: | |
print(f'Error in initial request: {response.status_code}') | |
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
print('Initial request successful, processing response...') | |
response_data = response.json() | |
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
headers2 = { | |
"Content-Type": "application/json", | |
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
} | |
compute_payload = { | |
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
} | |
print(f'Sending translation request with text: "{text}"') | |
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
if compute_response.status_code != 200: | |
print(f'Error in translation request: {compute_response.status_code}') | |
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
print('Translation request successful, processing translation...') | |
compute_response_data = compute_response.json() | |
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
print(f'Translation successful. Translated content: "{translated_content}"') | |
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
# Existing chatbot functions | |
VECTOR_COLUMN_NAME = "vector" | |
TEXT_COLUMN_NAME = "text" | |
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
proj_dir = Path(__file__).parent | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN) | |
env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
template = env.get_template('template.j2') | |
template_html = env.get_template('template_html.j2') | |
def add_text(history, text): | |
history = [] if history is None else history | |
history = history + [(text, None)] | |
return history, gr.Textbox(value="", interactive=False) | |
def bot(history, cross_encoder): | |
top_rerank = 25 | |
top_k_rank = 20 | |
query = history[-1][0] | |
if not query: | |
gr.Warning("Please submit a non-empty string as a prompt") | |
raise ValueError("Empty string was submitted") | |
logger.warning('Retrieving documents...') | |
if cross_encoder == '(HIGH ACCURATE) ColBERT': | |
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
documents_full = RAG_db.search(query, k=top_k_rank) | |
documents = [item['content'] for item in documents_full] | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
yield history, prompt_html | |
else: | |
document_start = perf_counter() | |
query_vec = retriever.encode(query) | |
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
query_doc_pair = [[query, doc] for doc in documents] | |
if cross_encoder == '(FAST) MiniLM-L6v2': | |
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
elif cross_encoder == '(ACCURATE) BGE reranker': | |
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
cross_scores = cross_encoder1.predict(query_doc_pair) | |
sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
document_time = perf_counter() - document_start | |
prompt = template.render(documents=documents, query=query) | |
prompt_html = template_html.render(documents=documents, query=query) | |
generate_fn = generate_hf | |
history[-1][1] = "" | |
for character in generate_fn(prompt, history[:-1]): | |
history[-1][1] = character | |
yield history, prompt_html | |
def translate_text(response_text, selected_language): | |
iso_language_codes = { | |
"Hindi": "hi", | |
"Gom": "gom", | |
"Kannada": "kn", | |
"Dogri": "doi", | |
"Bodo": "brx", | |
"Urdu": "ur", | |
"Tamil": "ta", | |
"Kashmiri": "ks", | |
"Assamese": "as", | |
"Bengali": "bn", | |
"Marathi": "mr", | |
"Sindhi": "sd", | |
"Maithili": "mai", | |
"Punjabi": "pa", | |
"Malayalam": "ml", | |
"Manipuri": "mni", | |
"Telugu": "te", | |
"Sanskrit": "sa", | |
"Nepali": "ne", | |
"Santali": "sat", | |
"Gujarati": "gu", | |
"Odia": "or" | |
} | |
to_code = iso_language_codes[selected_language] | |
translation = bhashini_translate(response_text, to_code=to_code) | |
return translation['translated_content'] | |
# Gradio interface | |
with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: | |
with gr.Row(): | |
with gr.Column(scale=10): | |
gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1></div>""") | |
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""") | |
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
with gr.Column(scale=3): | |
gr.Image(value='logo.png', height=200, width=200) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
bubble_full_width=False, | |
show_copy_button=True, | |
show_share_button=True, | |
) | |
with gr.Row(): | |
txt = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter", | |
container=False, | |
) | |
txt_btn = gr.Button(value="Submit text", scale=1) | |
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)") | |
language_dropdown = gr.Dropdown( | |
choices=[ | |
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
"Gujarati", "Odia" | |
], | |
value="Hindi", # default to Hindi | |
label="Select Language for Translation" | |
) | |
prompt_html = gr.HTML() | |
translated_textbox = gr.Textbox(label="Translated Response") | |
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then( | |
translate_text, [txt, language_dropdown], translated_textbox | |
) | |
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then( | |
translate_text, [txt, language_dropdown], translated_textbox | |
) | |
# Launch the Gradio application | |
CHATBOT.launch(share=True) | |
# from ragatouille import RAGPretrainedModel | |
# import subprocess | |
# import json | |
# import spaces | |
# import firebase_admin | |
# from firebase_admin import credentials, firestore | |
# import logging | |
# from pathlib import Path | |
# from time import perf_counter | |
# from datetime import datetime | |
# import gradio as gr | |
# from jinja2 import Environment, FileSystemLoader | |
# import numpy as np | |
# from sentence_transformers import CrossEncoder | |
# from huggingface_hub import InferenceClient | |
# from os import getenv | |
# from backend.query_llm import generate_hf, generate_openai | |
# from backend.semantic_search import table, retriever | |
# from huggingface_hub import InferenceClient | |
# VECTOR_COLUMN_NAME = "vector" | |
# TEXT_COLUMN_NAME = "text" | |
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
# proj_dir = Path(__file__).parent | |
# # Setting up the logging | |
# logging.basicConfig(level=logging.INFO) | |
# logger = logging.getLogger(__name__) | |
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) | |
# # Set up the template environment with the templates directory | |
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
# # Load the templates directly from the environment | |
# template = env.get_template('template.j2') | |
# template_html = env.get_template('template_html.j2') | |
# def add_text(history, text): | |
# history = [] if history is None else history | |
# history = history + [(text, None)] | |
# return history, gr.Textbox(value="", interactive=False) | |
# def bot(history, cross_encoder): | |
# top_rerank = 25 | |
# top_k_rank = 20 | |
# query = history[-1][0] | |
# if not query: | |
# gr.Warning("Please submit a non-empty string as a prompt") | |
# raise ValueError("Empty string was submitted") | |
# logger.warning('Retrieving documents...') | |
# # if COLBERT RAGATATOUILLE PROCEDURE : | |
# if cross_encoder=='(HIGH ACCURATE) ColBERT': | |
# gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# documents_full=RAG_db.search(query,k=top_k_rank) | |
# documents=[item['content'] for item in documents_full] | |
# # Create Prompt | |
# prompt = template.render(documents=documents, query=query) | |
# prompt_html = template_html.render(documents=documents, query=query) | |
# generate_fn = generate_hf | |
# history[-1][1] = "" | |
# for character in generate_fn(prompt, history[:-1]): | |
# history[-1][1] = character | |
# yield history, prompt_html | |
# print('Final history is ',history) | |
# #store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
# else: | |
# # Retrieve documents relevant to query | |
# document_start = perf_counter() | |
# query_vec = retriever.encode(query) | |
# logger.warning(f'Finished query vec') | |
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
# logger.warning(f'Finished search') | |
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
# logger.warning(f'start cross encoder {len(documents)}') | |
# # Retrieve documents relevant to query | |
# query_doc_pair = [[query, doc] for doc in documents] | |
# if cross_encoder=='(FAST) MiniLM-L6v2' : | |
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
# elif cross_encoder=='(ACCURATE) BGE reranker': | |
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
# cross_scores = cross_encoder1.predict(query_doc_pair) | |
# sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
# logger.warning(f'Finished cross encoder {len(documents)}') | |
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
# logger.warning(f'num documents {len(documents)}') | |
# document_time = perf_counter() - document_start | |
# logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
# # Create Prompt | |
# prompt = template.render(documents=documents, query=query) | |
# prompt_html = template_html.render(documents=documents, query=query) | |
# generate_fn = generate_hf | |
# history[-1][1] = "" | |
# for character in generate_fn(prompt, history[:-1]): | |
# history[-1][1] = character | |
# yield history, prompt_html | |
# print('Final history is ',history) | |
# #store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
# # def system_instructions(question_difficulty, topic,documents_str): | |
# # return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" | |
# RAG_db = gr.State() | |
# # def load_model(): | |
# # try: | |
# # # Initialize the model | |
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# # # Load the RAG database | |
# # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# # return 'Ready to Go!!' | |
# # except Exception as e: | |
# # return f"Error loading model: {e}" | |
# # def generate_quiz(question_difficulty, topic): | |
# # if not topic.strip(): | |
# # return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)] | |
# # top_k_rank = 10 | |
# # # Load the model and database within the generate_quiz function | |
# # try: | |
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
# # RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
# # gr.Warning('Model loaded!') | |
# # except Exception as e: | |
# # return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)] | |
# # RAG_db_ = RAG_db.value | |
# # documents_full = RAG_db_.search(topic, k=top_k_rank) | |
# # generate_kwargs = dict( | |
# # temperature=0.2, | |
# # max_new_tokens=4000, | |
# # top_p=0.95, | |
# # repetition_penalty=1.0, | |
# # do_sample=True, | |
# # seed=42, | |
# # ) | |
# # question_radio_list = [] | |
# # count = 0 | |
# # while count <= 3: | |
# # try: | |
# # documents = [item['content'] for item in documents_full] | |
# # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] | |
# # documents_str = '\n'.join(document_summaries) | |
# # formatted_prompt = system_instructions(question_difficulty, topic, documents_str) | |
# # pre_prompt = [ | |
# # {"role": "system", "content": formatted_prompt} | |
# # ] | |
# # response = client.text_generation( | |
# # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, | |
# # ) | |
# # output_json = json.loads(f"{response}") | |
# # global quiz_data | |
# # quiz_data = output_json | |
# # for question_num in range(1, 11): | |
# # question_key = f"Q{question_num}" | |
# # answer_key = f"A{question_num}" | |
# # question = quiz_data.get(question_key) | |
# # answer = quiz_data.get(quiz_data.get(answer_key)) | |
# # if not question or not answer: | |
# # continue | |
# # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
# # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] | |
# # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) | |
# # question_radio_list.append(radio) | |
# # if len(question_radio_list) == 10: | |
# # break | |
# # else: | |
# # count += 1 | |
# # continue | |
# # except Exception as e: | |
# # count += 1 | |
# # if count == 3: | |
# # return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)] | |
# # continue | |
# # return ['Quiz Generated!'] + question_radio_list | |
# # def compare_answers(*user_answers): | |
# # user_answer_list = user_answers | |
# # answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)] | |
# # score = sum(1 for answer in user_answer_list if answer in answers_list) | |
# # if score > 7: | |
# # message = f"### Excellent! You got {score} out of 10!" | |
# # elif score > 5: | |
# # message = f"### Good! You got {score} out of 10!" | |
# # else: | |
# # message = f"### You got {score} out of 10! Don’t worry, you can prepare well and try better next time!" | |
# # return message | |
# #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: | |
# with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: | |
# with gr.Row(): | |
# with gr.Column(scale=10): | |
# # gr.Markdown( | |
# # """ | |
# # # Theme preview: `paris` | |
# # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`. | |
# # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version | |
# # of this theme. | |
# # """ | |
# # ) | |
# gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1> | |
# </div>""", elem_id='heading') | |
# gr.HTML(value=f""" | |
# <p style="font-family: sans-serif; font-size: 16px;"> | |
# Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers | |
# </p> | |
# """, elem_id='Sub-heading') | |
# #usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ') | |
# with gr.Column(scale=3): | |
# gr.Image(value='logo.png',height=200,width=200) | |
# chatbot = gr.Chatbot( | |
# [], | |
# elem_id="chatbot", | |
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
# bubble_full_width=False, | |
# show_copy_button=True, | |
# show_share_button=True, | |
# ) | |
# with gr.Row(): | |
# txt = gr.Textbox( | |
# scale=3, | |
# show_label=False, | |
# placeholder="Enter text and press enter", | |
# container=False, | |
# ) | |
# txt_btn = gr.Button(value="Submit text", scale=1) | |
# cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") | |
# prompt_html = gr.HTML() | |
# # Turn off interactivity while generating if you click | |
# txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
# # Turn it back on | |
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# # Turn off interactivity while generating if you hit enter | |
# txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
# # Turn it back on | |
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
# # Examples | |
# gr.Examples(examples, txt) | |
# # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
# # with gr.Column(scale=4): | |
# # gr.HTML(""" | |
# # <center> | |
# # <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
# # <h2>Generative AI-powered Capacity building for Training Officers</h2> | |
# # <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! ⚠️</i> | |
# # </center> | |
# # """) | |
# # with gr.Column(scale=2): | |
# # gr.HTML(""" | |
# # <center> | |
# # <h2>Ready!</h2> | |
# # </center> | |
# # """) | |
# # # load_btn = gr.Button("Click to Load!🚀") | |
# # # load_text = gr.Textbox() | |
# # # load_btn.click(fn=load_model, outputs=load_text) | |
# # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
# # with gr.Row(): | |
# # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
# # generate_quiz_btn = gr.Button("Generate Quiz!🚀") | |
# # quiz_msg = gr.Textbox() | |
# # question_radios = [gr.Radio(visible=False) for _ in range(10)] | |
# # generate_quiz_btn.click( | |
# # fn=generate_quiz, | |
# # inputs=[radio, topic], | |
# # outputs=[quiz_msg] + question_radios | |
# # ) | |
# # check_button = gr.Button("Check Score") | |
# # score_textbox = gr.Markdown() | |
# # check_button.click( | |
# # fn=compare_answers, | |
# # inputs=question_radios, | |
# # outputs=score_textbox | |
# # ) | |
# #demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"]) | |
# CHATBOT.queue() | |
# CHATBOT.launch(debug=True) | |