| import requests | |
| import gradio as gr | |
| from ragatouille import RAGPretrainedModel | |
| import logging | |
| from pathlib import Path | |
| from time import perf_counter | |
| from sentence_transformers import CrossEncoder | |
| from huggingface_hub import InferenceClient | |
| from jinja2 import Environment, FileSystemLoader | |
| import numpy as np | |
| from os import getenv | |
| from backend.query_llm import generate_hf, generate_openai | |
| from backend.semantic_search import table, retriever | |
| from huggingface_hub import InferenceClient | |
| # Bhashini API translation function | |
| api_key = getenv('API_KEY') | |
| user_id = getenv('USER_ID') | |
| def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict: | |
| """Translates text from source language to target language using the Bhashini API.""" | |
| print(f'Starting translation process from {from_code} to {to_code}...') | |
| gr.Warning(f'Translating to {to_code}...') | |
| url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline' | |
| headers = { | |
| "Content-Type": "application/json", | |
| "userID": user_id, | |
| "ulcaApiKey": api_key | |
| } | |
| payload = { | |
| "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}], | |
| "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"} | |
| } | |
| print('Sending initial request to get the pipeline...') | |
| response = requests.post(url, json=payload, headers=headers) | |
| if response.status_code != 200: | |
| print(f'Error in initial request: {response.status_code}') | |
| return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None} | |
| print('Initial request successful, processing response...') | |
| response_data = response.json() | |
| service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"] | |
| callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"] | |
| print(f'Service ID: {service_id}, Callback URL: {callback_url}') | |
| headers2 = { | |
| "Content-Type": "application/json", | |
| response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"] | |
| } | |
| compute_payload = { | |
| "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}], | |
| "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]} | |
| } | |
| print(f'Sending translation request with text: "{text}"') | |
| compute_response = requests.post(callback_url, json=compute_payload, headers=headers2) | |
| if compute_response.status_code != 200: | |
| print(f'Error in translation request: {compute_response.status_code}') | |
| return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None} | |
| print('Translation request successful, processing translation...') | |
| compute_response_data = compute_response.json() | |
| translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"] | |
| print(f'Translation successful. Translated content: "{translated_content}"') | |
| return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content} | |
| # Existing chatbot functions | |
| VECTOR_COLUMN_NAME = "vector" | |
| TEXT_COLUMN_NAME = "text" | |
| HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
| proj_dir = Path(__file__).parent | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN) | |
| env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
| template = env.get_template('template.j2') | |
| template_html = env.get_template('template_html.j2') | |
| def add_text(history, text): | |
| history = [] if history is None else history | |
| history = history + [(text, None)] | |
| return history, gr.Textbox(value="", interactive=False) | |
| def bot(history, cross_encoder): | |
| top_rerank = 25 | |
| top_k_rank = 20 | |
| query = history[-1][0] | |
| if not query: | |
| gr.Warning("Please submit a non-empty string as a prompt") | |
| raise ValueError("Empty string was submitted") | |
| logger.warning('Retrieving documents...') | |
| if cross_encoder == '(HIGH ACCURATE) ColBERT': | |
| gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
| RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
| RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
| documents_full = RAG_db.search(query, k=top_k_rank) | |
| documents = [item['content'] for item in documents_full] | |
| prompt = template.render(documents=documents, query=query) | |
| prompt_html = template_html.render(documents=documents, query=query) | |
| generate_fn = generate_hf | |
| history[-1][1] = "" | |
| for character in generate_fn(prompt, history[:-1]): | |
| history[-1][1] = character | |
| yield history, prompt_html | |
| else: | |
| document_start = perf_counter() | |
| query_vec = retriever.encode(query) | |
| doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
| documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
| documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
| query_doc_pair = [[query, doc] for doc in documents] | |
| if cross_encoder == '(FAST) MiniLM-L6v2': | |
| cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
| elif cross_encoder == '(ACCURATE) BGE reranker': | |
| cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
| cross_scores = cross_encoder1.predict(query_doc_pair) | |
| sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
| documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
| document_time = perf_counter() - document_start | |
| prompt = template.render(documents=documents, query=query) | |
| prompt_html = template_html.render(documents=documents, query=query) | |
| generate_fn = generate_hf | |
| history[-1][1] = "" | |
| for character in generate_fn(prompt, history[:-1]): | |
| history[-1][1] = character | |
| yield history, prompt_html | |
| def translate_text(response_text, selected_language): | |
| iso_language_codes = { | |
| "Hindi": "hi", | |
| "Gom": "gom", | |
| "Kannada": "kn", | |
| "Dogri": "doi", | |
| "Bodo": "brx", | |
| "Urdu": "ur", | |
| "Tamil": "ta", | |
| "Kashmiri": "ks", | |
| "Assamese": "as", | |
| "Bengali": "bn", | |
| "Marathi": "mr", | |
| "Sindhi": "sd", | |
| "Maithili": "mai", | |
| "Punjabi": "pa", | |
| "Malayalam": "ml", | |
| "Manipuri": "mni", | |
| "Telugu": "te", | |
| "Sanskrit": "sa", | |
| "Nepali": "ne", | |
| "Santali": "sat", | |
| "Gujarati": "gu", | |
| "Odia": "or" | |
| } | |
| to_code = iso_language_codes[selected_language] | |
| translation = bhashini_translate(response_text, to_code=to_code) | |
| return translation['translated_content'] | |
| # Gradio interface | |
| with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: | |
| with gr.Row(): | |
| with gr.Column(scale=10): | |
| gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1></div>""") | |
| gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""") | |
| gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""") | |
| with gr.Column(scale=3): | |
| gr.Image(value='logo.png', height=200, width=200) | |
| chatbot = gr.Chatbot( | |
| [], | |
| elem_id="chatbot", | |
| avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
| 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
| bubble_full_width=False, | |
| show_copy_button=True, | |
| show_share_button=True, | |
| ) | |
| with gr.Row(): | |
| txt = gr.Textbox( | |
| scale=3, | |
| show_label=False, | |
| placeholder="Enter text and press enter", | |
| container=False, | |
| ) | |
| txt_btn = gr.Button(value="Submit text", scale=1) | |
| cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)") | |
| language_dropdown = gr.Dropdown( | |
| choices=[ | |
| "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi", | |
| "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali", | |
| "Gujarati", "Odia" | |
| ], | |
| value="Hindi", # default to Hindi | |
| label="Select Language for Translation" | |
| ) | |
| prompt_html = gr.HTML() | |
| translated_textbox = gr.Textbox(label="Translated Response") | |
| txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then( | |
| translate_text, [txt, language_dropdown], translated_textbox | |
| ) | |
| txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then( | |
| translate_text, [txt, language_dropdown], translated_textbox | |
| ) | |
| # Launch the Gradio application | |
| CHATBOT.launch(share=True) | |
| # from ragatouille import RAGPretrainedModel | |
| # import subprocess | |
| # import json | |
| # import spaces | |
| # import firebase_admin | |
| # from firebase_admin import credentials, firestore | |
| # import logging | |
| # from pathlib import Path | |
| # from time import perf_counter | |
| # from datetime import datetime | |
| # import gradio as gr | |
| # from jinja2 import Environment, FileSystemLoader | |
| # import numpy as np | |
| # from sentence_transformers import CrossEncoder | |
| # from huggingface_hub import InferenceClient | |
| # from os import getenv | |
| # from backend.query_llm import generate_hf, generate_openai | |
| # from backend.semantic_search import table, retriever | |
| # from huggingface_hub import InferenceClient | |
| # VECTOR_COLUMN_NAME = "vector" | |
| # TEXT_COLUMN_NAME = "text" | |
| # HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN") | |
| # proj_dir = Path(__file__).parent | |
| # # Setting up the logging | |
| # logging.basicConfig(level=logging.INFO) | |
| # logger = logging.getLogger(__name__) | |
| # client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN) | |
| # # Set up the template environment with the templates directory | |
| # env = Environment(loader=FileSystemLoader(proj_dir / 'templates')) | |
| # # Load the templates directly from the environment | |
| # template = env.get_template('template.j2') | |
| # template_html = env.get_template('template_html.j2') | |
| # def add_text(history, text): | |
| # history = [] if history is None else history | |
| # history = history + [(text, None)] | |
| # return history, gr.Textbox(value="", interactive=False) | |
| # def bot(history, cross_encoder): | |
| # top_rerank = 25 | |
| # top_k_rank = 20 | |
| # query = history[-1][0] | |
| # if not query: | |
| # gr.Warning("Please submit a non-empty string as a prompt") | |
| # raise ValueError("Empty string was submitted") | |
| # logger.warning('Retrieving documents...') | |
| # # if COLBERT RAGATATOUILLE PROCEDURE : | |
| # if cross_encoder=='(HIGH ACCURATE) ColBERT': | |
| # gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait') | |
| # RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
| # RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
| # documents_full=RAG_db.search(query,k=top_k_rank) | |
| # documents=[item['content'] for item in documents_full] | |
| # # Create Prompt | |
| # prompt = template.render(documents=documents, query=query) | |
| # prompt_html = template_html.render(documents=documents, query=query) | |
| # generate_fn = generate_hf | |
| # history[-1][1] = "" | |
| # for character in generate_fn(prompt, history[:-1]): | |
| # history[-1][1] = character | |
| # yield history, prompt_html | |
| # print('Final history is ',history) | |
| # #store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
| # else: | |
| # # Retrieve documents relevant to query | |
| # document_start = perf_counter() | |
| # query_vec = retriever.encode(query) | |
| # logger.warning(f'Finished query vec') | |
| # doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank) | |
| # logger.warning(f'Finished search') | |
| # documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list() | |
| # documents = [doc[TEXT_COLUMN_NAME] for doc in documents] | |
| # logger.warning(f'start cross encoder {len(documents)}') | |
| # # Retrieve documents relevant to query | |
| # query_doc_pair = [[query, doc] for doc in documents] | |
| # if cross_encoder=='(FAST) MiniLM-L6v2' : | |
| # cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') | |
| # elif cross_encoder=='(ACCURATE) BGE reranker': | |
| # cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base') | |
| # cross_scores = cross_encoder1.predict(query_doc_pair) | |
| # sim_scores_argsort = list(reversed(np.argsort(cross_scores))) | |
| # logger.warning(f'Finished cross encoder {len(documents)}') | |
| # documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]] | |
| # logger.warning(f'num documents {len(documents)}') | |
| # document_time = perf_counter() - document_start | |
| # logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...') | |
| # # Create Prompt | |
| # prompt = template.render(documents=documents, query=query) | |
| # prompt_html = template_html.render(documents=documents, query=query) | |
| # generate_fn = generate_hf | |
| # history[-1][1] = "" | |
| # for character in generate_fn(prompt, history[:-1]): | |
| # history[-1][1] = character | |
| # yield history, prompt_html | |
| # print('Final history is ',history) | |
| # #store_message(db,history[-1][0],history[-1][1],cross_encoder) | |
| # # def system_instructions(question_difficulty, topic,documents_str): | |
| # # return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]""" | |
| # RAG_db = gr.State() | |
| # # def load_model(): | |
| # # try: | |
| # # # Initialize the model | |
| # # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
| # # # Load the RAG database | |
| # # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
| # # return 'Ready to Go!!' | |
| # # except Exception as e: | |
| # # return f"Error loading model: {e}" | |
| # # def generate_quiz(question_difficulty, topic): | |
| # # if not topic.strip(): | |
| # # return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)] | |
| # # top_k_rank = 10 | |
| # # # Load the model and database within the generate_quiz function | |
| # # try: | |
| # # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0") | |
| # # RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index') | |
| # # gr.Warning('Model loaded!') | |
| # # except Exception as e: | |
| # # return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)] | |
| # # RAG_db_ = RAG_db.value | |
| # # documents_full = RAG_db_.search(topic, k=top_k_rank) | |
| # # generate_kwargs = dict( | |
| # # temperature=0.2, | |
| # # max_new_tokens=4000, | |
| # # top_p=0.95, | |
| # # repetition_penalty=1.0, | |
| # # do_sample=True, | |
| # # seed=42, | |
| # # ) | |
| # # question_radio_list = [] | |
| # # count = 0 | |
| # # while count <= 3: | |
| # # try: | |
| # # documents = [item['content'] for item in documents_full] | |
| # # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)] | |
| # # documents_str = '\n'.join(document_summaries) | |
| # # formatted_prompt = system_instructions(question_difficulty, topic, documents_str) | |
| # # pre_prompt = [ | |
| # # {"role": "system", "content": formatted_prompt} | |
| # # ] | |
| # # response = client.text_generation( | |
| # # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False, | |
| # # ) | |
| # # output_json = json.loads(f"{response}") | |
| # # global quiz_data | |
| # # quiz_data = output_json | |
| # # for question_num in range(1, 11): | |
| # # question_key = f"Q{question_num}" | |
| # # answer_key = f"A{question_num}" | |
| # # question = quiz_data.get(question_key) | |
| # # answer = quiz_data.get(quiz_data.get(answer_key)) | |
| # # if not question or not answer: | |
| # # continue | |
| # # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)] | |
| # # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys] | |
| # # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True) | |
| # # question_radio_list.append(radio) | |
| # # if len(question_radio_list) == 10: | |
| # # break | |
| # # else: | |
| # # count += 1 | |
| # # continue | |
| # # except Exception as e: | |
| # # count += 1 | |
| # # if count == 3: | |
| # # return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)] | |
| # # continue | |
| # # return ['Quiz Generated!'] + question_radio_list | |
| # # def compare_answers(*user_answers): | |
| # # user_answer_list = user_answers | |
| # # answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)] | |
| # # score = sum(1 for answer in user_answer_list if answer in answers_list) | |
| # # if score > 7: | |
| # # message = f"### Excellent! You got {score} out of 10!" | |
| # # elif score > 5: | |
| # # message = f"### Good! You got {score} out of 10!" | |
| # # else: | |
| # # message = f"### You got {score} out of 10! Donβt worry, you can prepare well and try better next time!" | |
| # # return message | |
| # #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo: | |
| # with gr.Blocks(theme='NoCrypt/miku') as CHATBOT: | |
| # with gr.Row(): | |
| # with gr.Column(scale=10): | |
| # # gr.Markdown( | |
| # # """ | |
| # # # Theme preview: `paris` | |
| # # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`. | |
| # # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version | |
| # # of this theme. | |
| # # """ | |
| # # ) | |
| # gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1> | |
| # </div>""", elem_id='heading') | |
| # gr.HTML(value=f""" | |
| # <p style="font-family: sans-serif; font-size: 16px;"> | |
| # Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers | |
| # </p> | |
| # """, elem_id='Sub-heading') | |
| # #usage_count = get_and_increment_value_count(db,collection_name, field_name) | |
| # gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ') | |
| # with gr.Column(scale=3): | |
| # gr.Image(value='logo.png',height=200,width=200) | |
| # chatbot = gr.Chatbot( | |
| # [], | |
| # elem_id="chatbot", | |
| # avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg', | |
| # 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'), | |
| # bubble_full_width=False, | |
| # show_copy_button=True, | |
| # show_share_button=True, | |
| # ) | |
| # with gr.Row(): | |
| # txt = gr.Textbox( | |
| # scale=3, | |
| # show_label=False, | |
| # placeholder="Enter text and press enter", | |
| # container=False, | |
| # ) | |
| # txt_btn = gr.Button(value="Submit text", scale=1) | |
| # cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)") | |
| # prompt_html = gr.HTML() | |
| # # Turn off interactivity while generating if you click | |
| # txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| # bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
| # # Turn it back on | |
| # txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # # Turn off interactivity while generating if you hit enter | |
| # txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
| # bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html]) | |
| # # Turn it back on | |
| # txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False) | |
| # # Examples | |
| # gr.Examples(examples, txt) | |
| # # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT: | |
| # # with gr.Column(scale=4): | |
| # # gr.HTML(""" | |
| # # <center> | |
| # # <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1> | |
| # # <h2>Generative AI-powered Capacity building for Training Officers</h2> | |
| # # <i>β οΈ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! β οΈ</i> | |
| # # </center> | |
| # # """) | |
| # # with gr.Column(scale=2): | |
| # # gr.HTML(""" | |
| # # <center> | |
| # # <h2>Ready!</h2> | |
| # # </center> | |
| # # """) | |
| # # # load_btn = gr.Button("Click to Load!π") | |
| # # # load_text = gr.Textbox() | |
| # # # load_btn.click(fn=load_model, outputs=load_text) | |
| # # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual") | |
| # # with gr.Row(): | |
| # # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?") | |
| # # generate_quiz_btn = gr.Button("Generate Quiz!π") | |
| # # quiz_msg = gr.Textbox() | |
| # # question_radios = [gr.Radio(visible=False) for _ in range(10)] | |
| # # generate_quiz_btn.click( | |
| # # fn=generate_quiz, | |
| # # inputs=[radio, topic], | |
| # # outputs=[quiz_msg] + question_radios | |
| # # ) | |
| # # check_button = gr.Button("Check Score") | |
| # # score_textbox = gr.Markdown() | |
| # # check_button.click( | |
| # # fn=compare_answers, | |
| # # inputs=question_radios, | |
| # # outputs=score_textbox | |
| # # ) | |
| # #demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"]) | |
| # CHATBOT.queue() | |
| # CHATBOT.launch(debug=True) | |