File size: 27,860 Bytes
bc50791 91fad79 bc50791 91fad79 c5575ca 72508d4 91fad79 bc50791 72508d4 8f92a24 97badab bc50791 7a4c273 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 97badab bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 073ef13 91fad79 58c3d9a 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 c5575ca 18e1ae7 91fad79 18e1ae7 91fad79 58c3d9a 073ef13 bc50791 1fad4eb bc50791 58c3d9a bc50791 58c3d9a 1fad4eb bc50791 57d1675 8f92a24 91fad79 bc50791 72508d4 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 0aeac8d 58c3d9a 073ef13 38b35fe 073ef13 38b35fe 073ef13 38b35fe 073ef13 58c3d9a 628d310 0aeac8d 58c3d9a a735e18 0aeac8d 91fad79 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 91fad79 bc50791 a941cf4 bc50791 91fad79 bc50791 a941cf4 bc50791 a941cf4 bc50791 a941cf4 bc50791 91fad79 bc50791 a941cf4 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 bc50791 91fad79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 |
import requests
import gradio as gr
from ragatouille import RAGPretrainedModel
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from jinja2 import Environment, FileSystemLoader
import numpy as np
from os import getenv
from backend.query_llm import generate_hf, generate_qwen
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient
# Bhashini API translation function
api_key = getenv('API_KEY')
user_id = getenv('USER_ID')
def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
"""Translates text from source language to target language using the Bhashini API."""
if not text.strip():
print('Input text is empty. Please provide valid text for translation.')
return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
else:
print('Input text - ',text)
print(f'Starting translation process from {from_code} to {to_code}...')
print(f'Starting translation process from {from_code} to {to_code}...')
gr.Warning(f'Translating to {to_code}...')
url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
headers = {
"Content-Type": "application/json",
"userID": user_id,
"ulcaApiKey": api_key
}
payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
"pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
}
print('Sending initial request to get the pipeline...')
response = requests.post(url, json=payload, headers=headers)
if response.status_code != 200:
print(f'Error in initial request: {response.status_code}')
return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}
print('Initial request successful, processing response...')
response_data = response.json()
service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
print(f'Service ID: {service_id}, Callback URL: {callback_url}')
headers2 = {
"Content-Type": "application/json",
response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
}
compute_payload = {
"pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
"inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
}
print(f'Sending translation request with text: "{text}"')
compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
if compute_response.status_code != 200:
print(f'Error in translation request: {compute_response.status_code}')
return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
print('Translation request successful, processing translation...')
compute_response_data = compute_response.json()
translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
print(f'Translation successful. Translated content: "{translated_content}"')
return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}
# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
def add_text(history, text):
history = [] if history is None else history
history = history + [(text, None)]
return history, gr.Textbox(value="", interactive=False)
def bot(history, cross_encoder):
top_rerank = 25
top_k_rank = 20
query = history[-1][0] if history else ''
if not query:
gr.Warning("Please submit a non-empty string as a prompt")
raise ValueError("Empty string was submitted")
logger.warning('Retrieving documents...')
if cross_encoder == '(HIGH ACCURATE) ColBERT':
gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
documents_full = RAG_db.search(query, k=top_k_rank)
documents = [item['content'] for item in documents_full]
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
generate_fn = generate_hf
history[-1][1] = ""
for character in generate_fn(prompt, history[:-1]):
history[-1][1] = character
yield history, prompt_html
else:
document_start = perf_counter()
query_vec = retriever.encode(query)
doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
query_doc_pair = [[query, doc] for doc in documents]
if cross_encoder == '(FAST) MiniLM-L6v2':
cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
elif cross_encoder == '(ACCURATE) BGE reranker':
cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
cross_scores = cross_encoder1.predict(query_doc_pair)
sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
document_time = perf_counter() - document_start
prompt = template.render(documents=documents, query=query)
prompt_html = template_html.render(documents=documents, query=query)
#generate_fn = generate_hf
generate_fn=generate_qwen
# Create a new history entry instead of modifying the tuple directly
new_history = history[:-1] + [ (query, "") ]
for character in generate_fn(prompt, history[:-1]):
new_history[-1] = (query, character) # Update the last tuple with new text
yield new_history, prompt_html
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
#def translate_text(response_text, selected_language):
def translate_text(selected_language,history):
iso_language_codes = {
"Hindi": "hi",
"Gom": "gom",
"Kannada": "kn",
"Dogri": "doi",
"Bodo": "brx",
"Urdu": "ur",
"Tamil": "ta",
"Kashmiri": "ks",
"Assamese": "as",
"Bengali": "bn",
"Marathi": "mr",
"Sindhi": "sd",
"Maithili": "mai",
"Punjabi": "pa",
"Malayalam": "ml",
"Manipuri": "mni",
"Telugu": "te",
"Sanskrit": "sa",
"Nepali": "ne",
"Santali": "sat",
"Gujarati": "gu",
"Odia": "or"
}
to_code = iso_language_codes[selected_language]
response_text = history[-1][1] if history else ''
translation = bhashini_translate(response_text, to_code=to_code)
return translation['translated_content']
# iso_language_codes = {
# "Hindi": "hi",
# "Gom": "gom",
# "Kannada": "kn",
# "Dogri": "doi",
# "Bodo": "brx",
# "Urdu": "ur",
# "Tamil": "ta",
# "Kashmiri": "ks",
# "Assamese": "as",
# "Bengali": "bn",
# "Marathi": "mr",
# "Sindhi": "sd",
# "Maithili": "mai",
# "Punjabi": "pa",
# "Malayalam": "ml",
# "Manipuri": "mni",
# "Telugu": "te",
# "Sanskrit": "sa",
# "Nepali": "ne",
# "Santali": "sat",
# "Gujarati": "gu",
# "Odia": "or"
# }
# to_code = iso_language_codes[selected_language]
# translation = bhashini_translate(response_text, to_code=to_code)
# return translation['translated_content']
# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
history_state = gr.State([])
with gr.Row():
with gr.Column(scale=10):
gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1></div>""")
gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")
with gr.Column(scale=3):
gr.Image(value='logo.png', height=200, width=200)
chatbot = gr.Chatbot(
[],
elem_id="chatbot",
avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
bubble_full_width=False,
show_copy_button=True,
show_share_button=True,
)
with gr.Row():
txt = gr.Textbox(
scale=3,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
txt_btn = gr.Button(value="Submit text", scale=1)
cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
language_dropdown = gr.Dropdown(
choices=[
"Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
"Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
"Gujarati", "Odia"
],
value="Hindi", # default to Hindi
label="Select Language for Translation"
)
prompt_html = gr.HTML()
translated_textbox = gr.Textbox(label="Translated Response")
def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
history = history_state
history.append((txt, ""))
#history_state.value=(history)
# Call bot function
bot_output = list(bot(history, cross_encoder))
history, prompt_html = bot_output[-1]
# Update the history state
history_state[:] = history
# Translate text
translated_text = translate_text(language_dropdown, history)
return history, prompt_html, translated_text
txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond',
'What are benefits of the AEO Scheme and eligibility criteria?',
'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD']
gr.Examples(examples, txt)
# txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
# bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(
# translate_text, [txt, language_dropdown], translated_textbox
# )
# txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
# bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(
# translate_text, [txt, language_dropdown], translated_textbox
# )
# Launch the Gradio application
CHATBOT.launch(share=True)
# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from os import getenv
# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient
# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))
# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')
# def add_text(history, text):
# history = [] if history is None else history
# history = history + [(text, None)]
# return history, gr.Textbox(value="", interactive=False)
# def bot(history, cross_encoder):
# top_rerank = 25
# top_k_rank = 20
# query = history[-1][0]
# if not query:
# gr.Warning("Please submit a non-empty string as a prompt")
# raise ValueError("Empty string was submitted")
# logger.warning('Retrieving documents...')
# # if COLBERT RAGATATOUILLE PROCEDURE :
# if cross_encoder=='(HIGH ACCURATE) ColBERT':
# gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
# RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# documents_full=RAG_db.search(query,k=top_k_rank)
# documents=[item['content'] for item in documents_full]
# # Create Prompt
# prompt = template.render(documents=documents, query=query)
# prompt_html = template_html.render(documents=documents, query=query)
# generate_fn = generate_hf
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
# print('Final history is ',history)
# #store_message(db,history[-1][0],history[-1][1],cross_encoder)
# else:
# # Retrieve documents relevant to query
# document_start = perf_counter()
# query_vec = retriever.encode(query)
# logger.warning(f'Finished query vec')
# doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
# logger.warning(f'Finished search')
# documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
# documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
# logger.warning(f'start cross encoder {len(documents)}')
# # Retrieve documents relevant to query
# query_doc_pair = [[query, doc] for doc in documents]
# if cross_encoder=='(FAST) MiniLM-L6v2' :
# cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# elif cross_encoder=='(ACCURATE) BGE reranker':
# cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
# cross_scores = cross_encoder1.predict(query_doc_pair)
# sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
# logger.warning(f'Finished cross encoder {len(documents)}')
# documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
# logger.warning(f'num documents {len(documents)}')
# document_time = perf_counter() - document_start
# logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
# # Create Prompt
# prompt = template.render(documents=documents, query=query)
# prompt_html = template_html.render(documents=documents, query=query)
# generate_fn = generate_hf
# history[-1][1] = ""
# for character in generate_fn(prompt, history[:-1]):
# history[-1][1] = character
# yield history, prompt_html
# print('Final history is ',history)
# #store_message(db,history[-1][0],history[-1][1],cross_encoder)
# # def system_instructions(question_difficulty, topic,documents_str):
# # return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""
# RAG_db = gr.State()
# # def load_model():
# # try:
# # # Initialize the model
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# # # Load the RAG database
# # RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# # return 'Ready to Go!!'
# # except Exception as e:
# # return f"Error loading model: {e}"
# # def generate_quiz(question_difficulty, topic):
# # if not topic.strip():
# # return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)]
# # top_k_rank = 10
# # # Load the model and database within the generate_quiz function
# # try:
# # RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# # RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# # gr.Warning('Model loaded!')
# # except Exception as e:
# # return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)]
# # RAG_db_ = RAG_db.value
# # documents_full = RAG_db_.search(topic, k=top_k_rank)
# # generate_kwargs = dict(
# # temperature=0.2,
# # max_new_tokens=4000,
# # top_p=0.95,
# # repetition_penalty=1.0,
# # do_sample=True,
# # seed=42,
# # )
# # question_radio_list = []
# # count = 0
# # while count <= 3:
# # try:
# # documents = [item['content'] for item in documents_full]
# # document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
# # documents_str = '\n'.join(document_summaries)
# # formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
# # pre_prompt = [
# # {"role": "system", "content": formatted_prompt}
# # ]
# # response = client.text_generation(
# # formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
# # )
# # output_json = json.loads(f"{response}")
# # global quiz_data
# # quiz_data = output_json
# # for question_num in range(1, 11):
# # question_key = f"Q{question_num}"
# # answer_key = f"A{question_num}"
# # question = quiz_data.get(question_key)
# # answer = quiz_data.get(quiz_data.get(answer_key))
# # if not question or not answer:
# # continue
# # choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# # choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
# # radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# # question_radio_list.append(radio)
# # if len(question_radio_list) == 10:
# # break
# # else:
# # count += 1
# # continue
# # except Exception as e:
# # count += 1
# # if count == 3:
# # return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)]
# # continue
# # return ['Quiz Generated!'] + question_radio_list
# # def compare_answers(*user_answers):
# # user_answer_list = user_answers
# # answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)]
# # score = sum(1 for answer in user_answer_list if answer in answers_list)
# # if score > 7:
# # message = f"### Excellent! You got {score} out of 10!"
# # elif score > 5:
# # message = f"### Good! You got {score} out of 10!"
# # else:
# # message = f"### You got {score} out of 10! Don’t worry, you can prepare well and try better next time!"
# # return message
# #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
# with gr.Blocks(theme='NoCrypt/miku') as CHATBOT:
# with gr.Row():
# with gr.Column(scale=10):
# # gr.Markdown(
# # """
# # # Theme preview: `paris`
# # To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`.
# # You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version
# # of this theme.
# # """
# # )
# gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1>
# </div>""", elem_id='heading')
# gr.HTML(value=f"""
# <p style="font-family: sans-serif; font-size: 16px;">
# Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers
# </p>
# """, elem_id='Sub-heading')
# #usage_count = get_and_increment_value_count(db,collection_name, field_name)
# gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ')
# with gr.Column(scale=3):
# gr.Image(value='logo.png',height=200,width=200)
# chatbot = gr.Chatbot(
# [],
# elem_id="chatbot",
# avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
# 'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
# bubble_full_width=False,
# show_copy_button=True,
# show_share_button=True,
# )
# with gr.Row():
# txt = gr.Textbox(
# scale=3,
# show_label=False,
# placeholder="Enter text and press enter",
# container=False,
# )
# txt_btn = gr.Button(value="Submit text", scale=1)
# cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")
# prompt_html = gr.HTML()
# # Turn off interactivity while generating if you click
# txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])
# # Turn it back on
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# # Turn off interactivity while generating if you hit enter
# txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
# bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])
# # Turn it back on
# txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)
# # Examples
# gr.Examples(examples, txt)
# # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# # with gr.Column(scale=4):
# # gr.HTML("""
# # <center>
# # <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# # <h2>Generative AI-powered Capacity building for Training Officers</h2>
# # <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! ⚠️</i>
# # </center>
# # """)
# # with gr.Column(scale=2):
# # gr.HTML("""
# # <center>
# # <h2>Ready!</h2>
# # </center>
# # """)
# # # load_btn = gr.Button("Click to Load!🚀")
# # # load_text = gr.Textbox()
# # # load_btn.click(fn=load_model, outputs=load_text)
# # topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")
# # with gr.Row():
# # radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
# # generate_quiz_btn = gr.Button("Generate Quiz!🚀")
# # quiz_msg = gr.Textbox()
# # question_radios = [gr.Radio(visible=False) for _ in range(10)]
# # generate_quiz_btn.click(
# # fn=generate_quiz,
# # inputs=[radio, topic],
# # outputs=[quiz_msg] + question_radios
# # )
# # check_button = gr.Button("Check Score")
# # score_textbox = gr.Markdown()
# # check_button.click(
# # fn=compare_answers,
# # inputs=question_radios,
# # outputs=score_textbox
# # )
# #demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"])
# CHATBOT.queue()
# CHATBOT.launch(debug=True)
|