File size: 27,860 Bytes
bc50791
 
91fad79
 
 
 
 
 
bc50791
 
91fad79
c5575ca
72508d4
 
 
91fad79
bc50791
72508d4
 
8f92a24
97badab
bc50791
7a4c273
 
 
 
 
 
 
97badab
 
 
bc50791
 
 
 
 
 
 
 
 
 
97badab
 
bc50791
 
 
97badab
bc50791
 
97badab
bc50791
 
 
97badab
 
 
bc50791
 
 
 
 
 
 
 
 
97badab
bc50791
97badab
bc50791
97badab
bc50791
 
97badab
bc50791
 
 
97badab
bc50791
91fad79
 
bc50791
91fad79
 
 
 
bc50791
91fad79
 
bc50791
91fad79
 
 
 
 
 
 
 
 
 
 
073ef13
91fad79
 
58c3d9a
91fad79
 
bc50791
 
91fad79
 
 
bc50791
91fad79
bc50791
 
 
91fad79
bc50791
91fad79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc50791
91fad79
bc50791
 
 
 
91fad79
 
 
 
 
 
 
 
 
 
 
c5575ca
 
18e1ae7
 
91fad79
18e1ae7
 
 
 
 
 
91fad79
58c3d9a
 
073ef13
 
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fad4eb
bc50791
58c3d9a
bc50791
 
58c3d9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fad4eb
bc50791
57d1675
8f92a24
91fad79
 
bc50791
 
72508d4
91fad79
 
bc50791
 
91fad79
bc50791
 
 
 
 
 
 
 
91fad79
 
 
bc50791
 
 
 
 
91fad79
bc50791
 
 
 
 
 
 
 
 
 
 
 
91fad79
0aeac8d
58c3d9a
073ef13
38b35fe
073ef13
38b35fe
073ef13
 
 
 
 
38b35fe
 
073ef13
 
 
 
 
 
 
58c3d9a
628d310
 
 
 
 
0aeac8d
58c3d9a
a735e18
0aeac8d
 
 
 
 
 
 
 
 
91fad79
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941cf4
bc50791
 
 
 
 
 
 
 
 
 
 
a941cf4
bc50791
a941cf4
bc50791
 
 
 
 
 
 
 
 
a941cf4
bc50791
 
 
a941cf4
bc50791
a941cf4
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941cf4
91fad79
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941cf4
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
bc50791
 
a941cf4
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941cf4
bc50791
 
a941cf4
bc50791
 
 
 
 
 
 
 
 
 
91fad79
bc50791
 
 
 
 
 
a941cf4
bc50791
91fad79
bc50791
91fad79
bc50791
 
 
 
91fad79
bc50791
 
91fad79
bc50791
 
 
91fad79
bc50791
 
91fad79
bc50791
 
91fad79
 
 
 
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
bc50791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
bc50791
 
 
91fad79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import requests
import gradio as gr
from ragatouille import RAGPretrainedModel
import logging
from pathlib import Path
from time import perf_counter
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from jinja2 import Environment, FileSystemLoader
import numpy as np
from os import getenv
from backend.query_llm import generate_hf, generate_qwen
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient


# Bhashini API translation function
api_key = getenv('API_KEY')
user_id = getenv('USER_ID')

def bhashini_translate(text: str, from_code: str = "en", to_code: str = "hi") -> dict:
    """Translates text from source language to target language using the Bhashini API."""
    
    if not text.strip():
        print('Input text is empty. Please provide valid text for translation.')
        return {"status_code": 400, "message": "Input text is empty", "translated_content": None, "speech_content": None}
    else:
        print('Input text - ',text)
    print(f'Starting translation process from {from_code} to {to_code}...')
    print(f'Starting translation process from {from_code} to {to_code}...')
    gr.Warning(f'Translating to {to_code}...')
    
    url = 'https://meity-auth.ulcacontrib.org/ulca/apis/v0/model/getModelsPipeline'
    headers = {
        "Content-Type": "application/json",
        "userID": user_id,
        "ulcaApiKey": api_key
    }
    payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}}}],
        "pipelineRequestConfig": {"pipelineId": "64392f96daac500b55c543cd"}
    }
    
    print('Sending initial request to get the pipeline...')
    response = requests.post(url, json=payload, headers=headers)
    
    if response.status_code != 200:
        print(f'Error in initial request: {response.status_code}')
        return {"status_code": response.status_code, "message": "Error in translation request", "translated_content": None}

    print('Initial request successful, processing response...')
    response_data = response.json()
    service_id = response_data["pipelineResponseConfig"][0]["config"][0]["serviceId"]
    callback_url = response_data["pipelineInferenceAPIEndPoint"]["callbackUrl"]
    
    print(f'Service ID: {service_id}, Callback URL: {callback_url}')
    
    headers2 = {
        "Content-Type": "application/json",
        response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["name"]: response_data["pipelineInferenceAPIEndPoint"]["inferenceApiKey"]["value"]
    }
    compute_payload = {
        "pipelineTasks": [{"taskType": "translation", "config": {"language": {"sourceLanguage": from_code, "targetLanguage": to_code}, "serviceId": service_id}}],
        "inputData": {"input": [{"source": text}], "audio": [{"audioContent": None}]}
    }
    
    print(f'Sending translation request with text: "{text}"')
    compute_response = requests.post(callback_url, json=compute_payload, headers=headers2)
    
    if compute_response.status_code != 200:
        print(f'Error in translation request: {compute_response.status_code}')
        return {"status_code": compute_response.status_code, "message": "Error in translation", "translated_content": None}
    
    print('Translation request successful, processing translation...')
    compute_response_data = compute_response.json()
    translated_content = compute_response_data["pipelineResponse"][0]["output"][0]["target"]
    
    print(f'Translation successful. Translated content: "{translated_content}"')
    return {"status_code": 200, "message": "Translation successful", "translated_content": translated_content}


# Existing chatbot functions
VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1", token=HF_TOKEN)
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')

def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)

def bot(history, cross_encoder):

    top_rerank = 25
    top_k_rank = 20
    query = history[-1][0] if history else ''

    if not query:
        gr.Warning("Please submit a non-empty string as a prompt")
        raise ValueError("Empty string was submitted")

    logger.warning('Retrieving documents...')
    
    if cross_encoder == '(HIGH ACCURATE) ColBERT':
        gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
        RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        documents_full = RAG_db.search(query, k=top_k_rank)
        
        documents = [item['content'] for item in documents_full]
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
    else:
        document_start = perf_counter()
    
        query_vec = retriever.encode(query)
        doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
        documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
        documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
    
        query_doc_pair = [[query, doc] for doc in documents]
        if cross_encoder == '(FAST) MiniLM-L6v2':
            cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
        elif cross_encoder == '(ACCURATE) BGE reranker':
            cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
        cross_scores = cross_encoder1.predict(query_doc_pair)
        sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        
        documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
    
        document_time = perf_counter() - document_start
    
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        #generate_fn = generate_hf
        generate_fn=generate_qwen
        # Create a new history entry instead of modifying the tuple directly
        new_history = history[:-1] + [ (query, "") ]
        for character in generate_fn(prompt, history[:-1]):
            new_history[-1] = (query, character)  # Update the last tuple with new text
            yield new_history, prompt_html
        # history[-1][1] = ""
        # for character in generate_fn(prompt, history[:-1]):
        #     history[-1][1] = character
        #     yield history, prompt_html

#def translate_text(response_text, selected_language):
    
def translate_text(selected_language,history):
    
    iso_language_codes = {
        "Hindi": "hi",
        "Gom": "gom",
        "Kannada": "kn",
        "Dogri": "doi",
        "Bodo": "brx",
        "Urdu": "ur",
        "Tamil": "ta",
        "Kashmiri": "ks",
        "Assamese": "as",
        "Bengali": "bn",
        "Marathi": "mr",
        "Sindhi": "sd",
        "Maithili": "mai",
        "Punjabi": "pa",
        "Malayalam": "ml",
        "Manipuri": "mni",
        "Telugu": "te",
        "Sanskrit": "sa",
        "Nepali": "ne",
        "Santali": "sat",
        "Gujarati": "gu",
        "Odia": "or"
    }
    
    to_code = iso_language_codes[selected_language]
    response_text = history[-1][1] if history else ''
    translation = bhashini_translate(response_text, to_code=to_code)
    return translation['translated_content']
    # iso_language_codes = {
    #     "Hindi": "hi",
    #     "Gom": "gom",
    #     "Kannada": "kn",
    #     "Dogri": "doi",
    #     "Bodo": "brx",
    #     "Urdu": "ur",
    #     "Tamil": "ta",
    #     "Kashmiri": "ks",
    #     "Assamese": "as",
    #     "Bengali": "bn",
    #     "Marathi": "mr",
    #     "Sindhi": "sd",
    #     "Maithili": "mai",
    #     "Punjabi": "pa",
    #     "Malayalam": "ml",
    #     "Manipuri": "mni",
    #     "Telugu": "te",
    #     "Sanskrit": "sa",
    #     "Nepali": "ne",
    #     "Santali": "sat",
    #     "Gujarati": "gu",
    #     "Odia": "or"
    # }
    
    # to_code = iso_language_codes[selected_language]
    # translation = bhashini_translate(response_text, to_code=to_code)
    # return translation['translated_content']

# Gradio interface
with gr.Blocks(theme='gradio/soft') as CHATBOT:
    history_state = gr.State([])
    with gr.Row():
        with gr.Column(scale=10):
            gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1></div>""")
            gr.HTML(value=f"""<p style="font-family: sans-serif; font-size: 16px;">Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center using Open source LLMs for CBIC Officers</p>""")
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai. Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""")

        with gr.Column(scale=3):
            gr.Image(value='logo.png', height=200, width=200)

    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                       'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
        bubble_full_width=False,
        show_copy_button=True,
        show_share_button=True,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter",
            container=False,
        )
        txt_btn = gr.Button(value="Submit text", scale=1)
    
    cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2', '(ACCURATE) BGE reranker', '(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker', label="Embeddings", info="Only First query to Colbert may take little time)")
    language_dropdown = gr.Dropdown(
        choices=[
            "Hindi", "Gom", "Kannada", "Dogri", "Bodo", "Urdu", "Tamil", "Kashmiri", "Assamese", "Bengali", "Marathi",
            "Sindhi", "Maithili", "Punjabi", "Malayalam", "Manipuri", "Telugu", "Sanskrit", "Nepali", "Santali",
            "Gujarati", "Odia"
        ],
        value="Hindi",  # default to Hindi
        label="Select Language for Translation"
    )
    
    prompt_html = gr.HTML()
    
    translated_textbox = gr.Textbox(label="Translated Response")
    def update_history_and_translate(txt, cross_encoder, history_state, language_dropdown):
        history = history_state
        history.append((txt, ""))
        #history_state.value=(history)
        
        # Call bot function
        bot_output = list(bot(history, cross_encoder))
        history, prompt_html = bot_output[-1]
        
        # Update the history state
        history_state[:] = history
        
        # Translate text
        translated_text = translate_text(language_dropdown, history)
        return history, prompt_html, translated_text

    txt_msg = txt_btn.click(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])
    txt_msg = txt.submit(update_history_and_translate, [txt, cross_encoder, history_state, language_dropdown], [chatbot, prompt_html, translated_textbox])

    examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond',
            'What are benefits of  the AEO Scheme and eligibility criteria?',
            'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD']

    gr.Examples(examples, txt)


    
    # txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
    #     bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(
    #     translate_text, [txt, language_dropdown], translated_textbox
    # )
    
    # txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
    #     bot, [chatbot, cross_encoder], [chatbot, prompt_html]).then(
    #     translate_text, [txt, language_dropdown], translated_textbox
    # )

# Launch the Gradio application
CHATBOT.launch(share=True)

# from ragatouille import RAGPretrainedModel
# import subprocess
# import json
# import spaces
# import firebase_admin
# from firebase_admin import credentials, firestore
# import logging
# from pathlib import Path
# from time import perf_counter
# from datetime import datetime
# import gradio as gr
# from jinja2 import Environment, FileSystemLoader
# import numpy as np
# from sentence_transformers import CrossEncoder
# from huggingface_hub import InferenceClient
# from os import getenv

# from backend.query_llm import generate_hf, generate_openai
# from backend.semantic_search import table, retriever
# from huggingface_hub import InferenceClient


# VECTOR_COLUMN_NAME = "vector"
# TEXT_COLUMN_NAME = "text"
# HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
# proj_dir = Path(__file__).parent
# # Setting up the logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# # Set up the template environment with the templates directory
# env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# # Load the templates directly from the environment
# template = env.get_template('template.j2')
# template_html = env.get_template('template_html.j2')


# def add_text(history, text):
#     history = [] if history is None else history
#     history = history + [(text, None)]
#     return history, gr.Textbox(value="", interactive=False)


# def bot(history, cross_encoder):
#     top_rerank = 25
#     top_k_rank = 20
#     query = history[-1][0]

#     if not query:
#          gr.Warning("Please submit a non-empty string as a prompt")
#          raise ValueError("Empty string was submitted")

#     logger.warning('Retrieving documents...')
    
#     # if COLBERT RAGATATOUILLE PROCEDURE  : 
#     if cross_encoder=='(HIGH ACCURATE) ColBERT':
#         gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
#         RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#         RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#         documents_full=RAG_db.search(query,k=top_k_rank)
        
#         documents=[item['content'] for item in documents_full]
#         # Create Prompt
#         prompt = template.render(documents=documents, query=query)
#         prompt_html = template_html.render(documents=documents, query=query)
    
#         generate_fn = generate_hf
    
#         history[-1][1] = ""
#         for character in generate_fn(prompt, history[:-1]):
#             history[-1][1] = character
#             yield history, prompt_html
#         print('Final history is ',history)
#         #store_message(db,history[-1][0],history[-1][1],cross_encoder)
#     else:
#         # Retrieve documents relevant to query
#         document_start = perf_counter()
    
#         query_vec = retriever.encode(query)
#         logger.warning(f'Finished query vec')
#         doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
        
    
#         logger.warning(f'Finished search')
#         documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
#         documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
#         logger.warning(f'start cross encoder {len(documents)}')
#         # Retrieve documents relevant to query
#         query_doc_pair = [[query, doc] for doc in documents]
#         if cross_encoder=='(FAST) MiniLM-L6v2' :
#                cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') 
#         elif cross_encoder=='(ACCURATE) BGE reranker':
#                cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
#         cross_scores = cross_encoder1.predict(query_doc_pair)
#         sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
#         logger.warning(f'Finished cross encoder {len(documents)}')
        
#         documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
#         logger.warning(f'num documents {len(documents)}')
    
#         document_time = perf_counter() - document_start
#         logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
    
#         # Create Prompt
#         prompt = template.render(documents=documents, query=query)
#         prompt_html = template_html.render(documents=documents, query=query)
    
#         generate_fn = generate_hf
    
#         history[-1][1] = ""
#         for character in generate_fn(prompt, history[:-1]):
#             history[-1][1] = character            
#             yield history, prompt_html
#         print('Final history is ',history)
#         #store_message(db,history[-1][0],history[-1][1],cross_encoder)

# # def system_instructions(question_difficulty, topic,documents_str):
# #     return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty  about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""

# RAG_db = gr.State()

# # def load_model():
# #     try:
# #         # Initialize the model
# #         RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# #         # Load the RAG database
# #         RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# #         return 'Ready to Go!!'
# #     except Exception as e:
# #         return f"Error loading model: {e}"
    

# # def generate_quiz(question_difficulty, topic):
# #     if not topic.strip():
# #         return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)]
  
# #     top_k_rank = 10
# #     # Load the model and database within the generate_quiz function
# #     try:
# #         RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
# #         RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
# #         gr.Warning('Model loaded!')
# #     except Exception as e:
# #         return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)]
  
# #     RAG_db_ = RAG_db.value
# #     documents_full = RAG_db_.search(topic, k=top_k_rank)
    
# #     generate_kwargs = dict(
# #         temperature=0.2,
# #         max_new_tokens=4000,
# #         top_p=0.95,
# #         repetition_penalty=1.0,
# #         do_sample=True,
# #         seed=42,
# #     )
    
# #     question_radio_list = []
# #     count = 0
# #     while count <= 3:
# #         try:
# #             documents = [item['content'] for item in documents_full]
# #             document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
# #             documents_str = '\n'.join(document_summaries)
# #             formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
            
# #             pre_prompt = [
# #                 {"role": "system", "content": formatted_prompt}
# #             ]
# #             response = client.text_generation(
# #                 formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
# #             )
# #             output_json = json.loads(f"{response}")
            
# #             global quiz_data
# #             quiz_data = output_json
            
# #             for question_num in range(1, 11):
# #                 question_key = f"Q{question_num}"
# #                 answer_key = f"A{question_num}"
# #                 question = quiz_data.get(question_key)
# #                 answer = quiz_data.get(quiz_data.get(answer_key))
                
# #                 if not question or not answer:
# #                     continue
                
# #                 choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
# #                 choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
                
# #                 radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
# #                 question_radio_list.append(radio)
            
# #             if len(question_radio_list) == 10:
# #                 break
# #             else:
# #                 count += 1
# #                 continue
# #         except Exception as e:
# #             count += 1
# #             if count == 3:
# #                 return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)]
# #             continue
    
# #     return ['Quiz Generated!'] + question_radio_list

# # def compare_answers(*user_answers):
# #     user_answer_list = user_answers
# #     answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)]
    
# #     score = sum(1 for answer in user_answer_list if answer in answers_list)
    
# #     if score > 7:
# #         message = f"### Excellent! You got {score} out of 10!"
# #     elif score > 5:
# #         message = f"### Good! You got {score} out of 10!"
# #     else:
# #         message = f"### You got {score} out of 10! Don’t worry, you can prepare well and try better next time!"
    
# #     return message

# #with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
# with gr.Blocks(theme='NoCrypt/miku') as CHATBOT:
#     with gr.Row():
#         with gr.Column(scale=10):
#             # gr.Markdown(
#             #     """
#             #     # Theme preview: `paris`
#             #     To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`.
#             #     You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version
#             #     of this theme.
#             #     """
#             # )
#             gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1>
#             </div>""", elem_id='heading')
        
#             gr.HTML(value=f"""
#             <p style="font-family: sans-serif; font-size: 16px;">
#               Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center  using Open source LLMs for CBIC Officers
#             </p>
#             """, elem_id='Sub-heading')
#             #usage_count = get_and_increment_value_count(db,collection_name, field_name)
#             gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai  . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ')

#         with gr.Column(scale=3):
#             gr.Image(value='logo.png',height=200,width=200)

  
#     chatbot = gr.Chatbot(
#             [],
#             elem_id="chatbot",
#             avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
#                            'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
#             bubble_full_width=False,
#             show_copy_button=True,
#             show_share_button=True,
#             )

#     with gr.Row():
#         txt = gr.Textbox(
#                 scale=3,
#                 show_label=False,
#                 placeholder="Enter text and press enter",
#                 container=False,
#                 )
#         txt_btn = gr.Button(value="Submit text", scale=1)

#     cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")

#     prompt_html = gr.HTML()
#     # Turn off interactivity while generating if you click
#     txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
#             bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

#     # Turn it back on
#     txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

#     # Turn off interactivity while generating if you hit enter
#     txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
#             bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

#     # Turn it back on
#     txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

#     # Examples
#     gr.Examples(examples, txt)




# # with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
# #     with gr.Column(scale=4):
# #         gr.HTML("""
# #         <center>
# #             <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
# #             <h2>Generative AI-powered Capacity building for Training Officers</h2>
# #             <i>⚠️ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! ⚠️</i>
# #         </center>
# #         """)
    
# #     with gr.Column(scale=2):
# #         gr.HTML("""
# #         <center>
            
# #             <h2>Ready!</h2>
            
# #         </center>
# #         """)
# #         # load_btn = gr.Button("Click to Load!🚀")
# #         # load_text = gr.Textbox()
# #         # load_btn.click(fn=load_model, outputs=load_text)
    
# #     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

# #     with gr.Row():
# #         radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
    
# #     generate_quiz_btn = gr.Button("Generate Quiz!🚀")
# #     quiz_msg = gr.Textbox()
    
# #     question_radios = [gr.Radio(visible=False) for _ in range(10)]
    
# #     generate_quiz_btn.click(
# #         fn=generate_quiz, 
# #         inputs=[radio, topic], 
# #         outputs=[quiz_msg] + question_radios
# #     )
    
# #     check_button = gr.Button("Check Score")
# #     score_textbox = gr.Markdown()
    
# #     check_button.click(
# #         fn=compare_answers,
# #         inputs=question_radios,
# #         outputs=score_textbox
# #     )

# #demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"])
# CHATBOT.queue()
# CHATBOT.launch(debug=True)