File size: 24,610 Bytes
91fad79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66dc0a2
 
 
91fad79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1fad4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfc987
 
 
 
 
 
 
 
1fad4eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
 
 
 
 
 
 
 
 
 
 
 
 
66dc0a2
91fad79
 
 
 
66dc0a2
91fad79
 
 
66dc0a2
91fad79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a941cf4
91fad79
 
 
 
a941cf4
 
 
 
 
 
 
91fad79
9dfc987
 
 
 
 
 
 
 
 
 
a941cf4
91fad79
 
 
a941cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
a941cf4
 
 
91fad79
a941cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
a941cf4
 
 
 
91fad79
 
a941cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
 
 
a941cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
 
a941cf4
 
91fad79
a941cf4
91fad79
a941cf4
91fad79
 
 
a941cf4
 
 
91fad79
a941cf4
 
91fad79
a941cf4
 
91fad79
a941cf4
 
 
 
 
91fad79
a941cf4
 
91fad79
a941cf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91fad79
a941cf4
91fad79
a941cf4
91fad79
a941cf4
91fad79
a941cf4
91fad79
a941cf4
 
 
 
91fad79
a941cf4
91fad79
a941cf4
 
 
 
 
 
91fad79
a941cf4
91fad79
a941cf4
 
 
 
 
 
 
 
 
91fad79
a941cf4
91fad79
 
 
a941cf4
91fad79
a941cf4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

from ragatouille import RAGPretrainedModel
import subprocess
import json
import spaces
import firebase_admin
from firebase_admin import credentials, firestore
import logging
from pathlib import Path
from time import perf_counter
from datetime import datetime
import gradio as gr
from jinja2 import Environment, FileSystemLoader
import numpy as np
from sentence_transformers import CrossEncoder
from huggingface_hub import InferenceClient
from os import getenv

from backend.query_llm import generate_hf, generate_openai
from backend.semantic_search import table, retriever
from huggingface_hub import InferenceClient


VECTOR_COLUMN_NAME = "vector"
TEXT_COLUMN_NAME = "text"
HF_TOKEN = getenv("HUGGING_FACE_HUB_TOKEN")
proj_dir = Path(__file__).parent
# Setting up the logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1",token=HF_TOKEN)
# Set up the template environment with the templates directory
env = Environment(loader=FileSystemLoader(proj_dir / 'templates'))

# Load the templates directly from the environment
template = env.get_template('template.j2')
template_html = env.get_template('template_html.j2')
#___________________
# service_account_key='firebase.json'
# # Create a Certificate object from the service account info
# cred = credentials.Certificate(service_account_key)
# # Initialize the Firebase Admin 
# firebase_admin.initialize_app(cred)

# # # Create a reference to the Firestore database
# db = firestore.client()
# #db usage
# collection_name = 'Nirvachana'  # Replace with your collection name
# field_name = 'message_count'  # Replace with your field name for count
# Examples
examples = ['My transhipment cargo is missing','can u explain and tabulate difference between b 17 bond and a warehousing bond',
            'What are benefits of  the AEO Scheme and eligibility criteria?',
            'What are penalties for customs offences? ', 'what are penalties to customs officers misusing their powers under customs act?','What are eligibility criteria for exemption from cost recovery charges','list in detail what is procedure for obtaining new approval for openeing a CFS attached to an ICD']



# def get_and_increment_value_count(db , collection_name, field_name):
#     """
#     Retrieves a value count from the specified Firestore collection and field,
#     increments it by 1, and updates the field with the new value."""
#     collection_ref = db.collection(collection_name)
#     doc_ref = collection_ref.document('count_doc')  # Assuming a dedicated document for count

#     # Use a transaction to ensure consistency across reads and writes
#     try:
#         with db.transaction() as transaction:
#             # Get the current value count (or initialize to 0 if it doesn't exist)
#             current_count_doc = doc_ref.get()
#             current_count_data = current_count_doc.to_dict()
#             if current_count_data:
#                 current_count = current_count_data.get(field_name, 0)
#             else:
#                 current_count = 0
#             # Increment the count
#             new_count = current_count + 1
#             # Update the document with the new count
#             transaction.set(doc_ref, {field_name: new_count})
#             return new_count
#     except Exception as e:
#         print(f"Error retrieving and updating value count: {e}")
#         return None  # Indicate error
        
# def update_count_html():
#     usage_count = get_and_increment_value_count(db ,collection_name, field_name)
#     ccount_html = gr.HTML(value=f"""
#     <div style="display: flex; justify-content: flex-end;">
#         <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
#         <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
#     </div>
# """)
#     return count_html
    
# def store_message(db,query,answer,cross_encoder):
#     timestamp = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
#     # Create a new document reference with a dynamic document name based on timestamp
#     new_completion= db.collection('Nirvachana').document(f"chatlogs_{timestamp}")
#     new_completion.set({
#         'query': query,
#         'answer':answer,
#         'created_time': firestore.SERVER_TIMESTAMP,
#         'embedding': cross_encoder,
#         'title': 'Expenditure observer bot'
#     })


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.Textbox(value="", interactive=False)


def bot(history, cross_encoder):
    top_rerank = 25
    top_k_rank = 20
    query = history[-1][0]

    if not query:
         gr.Warning("Please submit a non-empty string as a prompt")
         raise ValueError("Empty string was submitted")

    logger.warning('Retrieving documents...')
    
    # if COLBERT RAGATATOUILLE PROCEDURE  : 
    if cross_encoder=='(HIGH ACCURATE) ColBERT':
        gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
        RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        documents_full=RAG_db.search(query,k=top_k_rank)
        
        documents=[item['content'] for item in documents_full]
        # Create Prompt
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character
            yield history, prompt_html
        print('Final history is ',history)
        #store_message(db,history[-1][0],history[-1][1],cross_encoder)
    else:
        # Retrieve documents relevant to query
        document_start = perf_counter()
    
        query_vec = retriever.encode(query)
        logger.warning(f'Finished query vec')
        doc1 = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_k_rank)
    
        
    
        logger.warning(f'Finished search')
        documents = table.search(query_vec, vector_column_name=VECTOR_COLUMN_NAME).limit(top_rerank).to_list()
        documents = [doc[TEXT_COLUMN_NAME] for doc in documents]
        logger.warning(f'start cross encoder {len(documents)}')
        # Retrieve documents relevant to query
        query_doc_pair = [[query, doc] for doc in documents]
        if cross_encoder=='(FAST) MiniLM-L6v2' :
               cross_encoder1 = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2') 
        elif cross_encoder=='(ACCURATE) BGE reranker':
               cross_encoder1 = CrossEncoder('BAAI/bge-reranker-base')
        
        cross_scores = cross_encoder1.predict(query_doc_pair)
        sim_scores_argsort = list(reversed(np.argsort(cross_scores)))
        logger.warning(f'Finished cross encoder {len(documents)}')
        
        documents = [documents[idx] for idx in sim_scores_argsort[:top_k_rank]]
        logger.warning(f'num documents {len(documents)}')
    
        document_time = perf_counter() - document_start
        logger.warning(f'Finished Retrieving documents in {round(document_time, 2)} seconds...')
    
        # Create Prompt
        prompt = template.render(documents=documents, query=query)
        prompt_html = template_html.render(documents=documents, query=query)
    
        generate_fn = generate_hf
    
        history[-1][1] = ""
        for character in generate_fn(prompt, history[:-1]):
            history[-1][1] = character            
            yield history, prompt_html
        print('Final history is ',history)
        #store_message(db,history[-1][0],history[-1][1],cross_encoder)

def system_instructions(question_difficulty, topic,documents_str):
    return f"""<s> [INST] Your are a great teacher and your task is to create 10 questions with 4 choices with a {question_difficulty} difficulty  about topic request " {topic} " only from the below given documents, {documents_str} then create an answers. Index in JSON format, the questions as "Q#":"" to "Q#":"", the four choices as "Q#:C1":"" to "Q#:C4":"", and the answers as "A#":"Q#:C#" to "A#":"Q#:C#". [/INST]"""

RAG_db = gr.State()

def load_model():
    try:
        # Initialize the model
        RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        # Load the RAG database
        RAG_db.value = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        return 'Ready to Go!!'
    except Exception as e:
        return f"Error loading model: {e}"
    

def generate_quiz(question_difficulty, topic):
    if not topic.strip():
        return ['Please enter a valid topic.'] + [gr.Radio(visible=False) for _ in range(10)]
  
    top_k_rank = 10
    # Load the model and database within the generate_quiz function
    try:
        RAG = RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
        RAG_db_ = RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
        gr.Warning('Model loaded!')
    except Exception as e:
        return [f"Error loading model: {e}"] + [gr.Radio(visible=False) for _ in range(10)]
  
    RAG_db_ = RAG_db.value
    documents_full = RAG_db_.search(topic, k=top_k_rank)
    
    generate_kwargs = dict(
        temperature=0.2,
        max_new_tokens=4000,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=42,
    )
    
    question_radio_list = []
    count = 0
    while count <= 3:
        try:
            documents = [item['content'] for item in documents_full]
            document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
            documents_str = '\n'.join(document_summaries)
            formatted_prompt = system_instructions(question_difficulty, topic, documents_str)
            
            pre_prompt = [
                {"role": "system", "content": formatted_prompt}
            ]
            response = client.text_generation(
                formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
            )
            output_json = json.loads(f"{response}")
            
            global quiz_data
            quiz_data = output_json
            
            for question_num in range(1, 11):
                question_key = f"Q{question_num}"
                answer_key = f"A{question_num}"
                question = quiz_data.get(question_key)
                answer = quiz_data.get(quiz_data.get(answer_key))
                
                if not question or not answer:
                    continue
                
                choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
                choice_list = [quiz_data.get(choice_key, "Choice not found") for choice_key in choice_keys]
                
                radio = gr.Radio(choices=choice_list, label=question, visible=True, interactive=True)
                question_radio_list.append(radio)
            
            if len(question_radio_list) == 10:
                break
            else:
                count += 1
                continue
        except Exception as e:
            count += 1
            if count == 3:
                return ['Sorry. Pls try with another topic!'] + [gr.Radio(visible=False) for _ in range(10)]
            continue
    
    return ['Quiz Generated!'] + question_radio_list

def compare_answers(*user_answers):
    user_answer_list = user_answers
    answers_list = [quiz_data.get(quiz_data.get(f"A{question_num}")) for question_num in range(1, 11)]
    
    score = sum(1 for answer in user_answer_list if answer in answers_list)
    
    if score > 7:
        message = f"### Excellent! You got {score} out of 10!"
    elif score > 5:
        message = f"### Good! You got {score} out of 10!"
    else:
        message = f"### You got {score} out of 10! Donโ€™t worry, you can prepare well and try better next time!"
    
    return message

#with gr.Blocks(theme='Insuz/SimpleIndigo') as demo:
with gr.Blocks(theme='NoCrypt/miku') as CHATBOT:
    with gr.Row():
        with gr.Column(scale=10):
            # gr.Markdown(
            #     """
            #     # Theme preview: `paris`
            #     To use this theme, set `theme='earneleh/paris'` in `gr.Blocks()` or `gr.Interface()`.
            #     You can append an `@` and a semantic version expression, e.g. @>=1.0.0,<2.0.0 to pin to a given version
            #     of this theme.
            #     """
            # )
            gr.HTML(value="""<div style="color: #FF4500;"><h1>ADWITIYA-</h1> <h1><span style="color: #008000">Custom Manual Chatbot and Quizbot</span></h1>
            </div>""", elem_id='heading')
        
            gr.HTML(value=f"""
            <p style="font-family: sans-serif; font-size: 16px;">
              Using GenAI for CBIC Capacity Building - A free chat bot developed by National Customs Targeting Center  using Open source LLMs for CBIC Officers
            </p>
            """, elem_id='Sub-heading')
            #usage_count = get_and_increment_value_count(db,collection_name, field_name)
            gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 14px;">Developed by NCTC,Mumbai  . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ')

        with gr.Column(scale=3):
            gr.Image(value='logo.png',height=200,width=200)

    
#     gr.HTML(value="""<div style="color: #FF4500;"><h1>CHEERFULL CBSE-</h1> <h1><span style="color: #008000">AI Assisted Fun Learning</span></h1>
#     <img src='logo.png' alt="Chatbot" width="50" height="50" />
#     </div>""", elem_id='heading')

#     gr.HTML(value=f"""
#     <p style="font-family: sans-serif; font-size: 16px;">
#       A free Artificial Intelligence  Chatbot assistant trained on CBSE Class 10 Science Notes to engage and help students and teachers of Puducherry.
#     </p>
#     """, elem_id='Sub-heading')
#     #usage_count = get_and_increment_value_count(db,collection_name, field_name)
#     gr.HTML(value=f"""<p style="font-family: Arial, sans-serif; font-size: 16px;">Developed by K M Ramyasri , PGT . Suggestions may be sent to <a href="mailto:[email protected]" style="color: #00008B; font-style: italic;">[email protected]</a>.</p>""", elem_id='Sub-heading1 ')
# #     count_html = gr.HTML(value=f"""
# #     <div style="display: flex; justify-content: flex-end;">
# #         <span style="font-weight: bold; color: maroon; font-size: 18px;">No of Usages:</span>
# #         <span style="font-weight: bold; color: maroon; font-size: 18px;">{usage_count}</span>
# #     </div>
# # """)
   
    chatbot = gr.Chatbot(
            [],
            elem_id="chatbot",
            avatar_images=('https://aui.atlassian.com/aui/8.8/docs/images/avatar-person.svg',
                           'https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.svg'),
            bubble_full_width=False,
            show_copy_button=True,
            show_share_button=True,
            )

    with gr.Row():
        txt = gr.Textbox(
                scale=3,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
                )
        txt_btn = gr.Button(value="Submit text", scale=1)

    cross_encoder = gr.Radio(choices=['(FAST) MiniLM-L6v2','(ACCURATE) BGE reranker','(HIGH ACCURATE) ColBERT'], value='(ACCURATE) BGE reranker',label="Embeddings", info="Only First query to Colbert may take litte time)")

    prompt_html = gr.HTML()
    # Turn off interactivity while generating if you click
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Turn off interactivity while generating if you hit enter
    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
            bot, [chatbot, cross_encoder], [chatbot, prompt_html])#.then(update_count_html,[],[count_html])

    # Turn it back on
    txt_msg.then(lambda: gr.Textbox(interactive=True), None, [txt], queue=False)

    # Examples
    gr.Examples(examples, txt)




with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
    with gr.Column(scale=4):
        gr.HTML("""
        <center>
            <h1><span style="color: purple;">ADWITIYA</span> Customs Manual Quizbot</h1>
            <h2>Generative AI-powered Capacity building for Training Officers</h2>
            <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions! โš ๏ธ</i>
        </center>
        """)
    
    with gr.Column(scale=2):
        gr.HTML("""
        <center>
            
            <h2>Ready!</h2>
            
        </center>
        """)
        # load_btn = gr.Button("Click to Load!๐Ÿš€")
        # load_text = gr.Textbox()
        # load_btn.click(fn=load_model, outputs=load_text)
    
    topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

    with gr.Row():
        radio = gr.Radio(["easy", "average", "hard"], label="How difficult should the quiz be?")
    
    generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
    quiz_msg = gr.Textbox()
    
    question_radios = [gr.Radio(visible=False) for _ in range(10)]
    
    generate_quiz_btn.click(
        fn=generate_quiz, 
        inputs=[radio, topic], 
        outputs=[quiz_msg] + question_radios
    )
    
    check_button = gr.Button("Check Score")
    score_textbox = gr.Markdown()
    
    check_button.click(
        fn=compare_answers,
        inputs=question_radios,
        outputs=score_textbox
    )

demo = gr.TabbedInterface([CHATBOT, QUIZBOT], ["AI ChatBot", "AI Quizbot"])
demo.queue()
demo.launch(debug=True)

# RAG_db=gr.State()

# with gr.Blocks(title="Quiz Maker", theme=gr.themes.Default(primary_hue="green", secondary_hue="green"), css="style.css") as QUIZBOT:
#     def load_model():
#         RAG= RAGPretrainedModel.from_pretrained("colbert-ir/colbertv2.0")
#         RAG_db.value=RAG.from_index('.ragatouille/colbert/indexes/cbseclass10index')
#         return 'Ready to Go!!'
#     with gr.Column(scale=4):
#         gr.HTML("""
#     <center>
#       <h1><span style="color: purple;">ADWITIYA</span> Customs Manual  Quizbot</h1>
#       <h2>Generative AI-powered Capacity building for Training Officers</h2>
#       <i>โš ๏ธ NACIN Faculties create quiz from any topic dynamically for classroom evaluation after their sessions ! โš ๏ธ</i>
#     </center>
#     """)
#         #gr.Warning('Retrieving using ColBERT.. First time query will take a minute for model to load..pls wait')
#     with gr.Column(scale=2):
#         load_btn = gr.Button("Click to Load!๐Ÿš€")
#         load_text=gr.Textbox()
#         load_btn.click(load_model,[],load_text)
        
   
#     topic = gr.Textbox(label="Enter the Topic for Quiz", placeholder="Write any topic/details from Customs Manual")

#     with gr.Row():
#         radio = gr.Radio(
#             ["easy", "average", "hard"], label="How difficult should the quiz be?"
#         )


#     generate_quiz_btn = gr.Button("Generate Quiz!๐Ÿš€")
#     quiz_msg=gr.Textbox()

#     question_radios = [gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
#         visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(visible=False), gr.Radio(
#         visible=False), gr.Radio(visible=False), gr.Radio(visible=False)]

#     print(question_radios)

#     @spaces.GPU
#     @generate_quiz_btn.click(inputs=[radio, topic], outputs=[quiz_msg]+question_radios, api_name="generate_quiz")
#     def generate_quiz(question_difficulty, topic):
#         top_k_rank=10
#         RAG_db_=RAG_db.value
#         documents_full=RAG_db_.search(topic,k=top_k_rank)
    
        

#         generate_kwargs = dict(
#             temperature=0.2,
#             max_new_tokens=4000,
#             top_p=0.95,
#             repetition_penalty=1.0,
#             do_sample=True,
#             seed=42,
#         )
#         question_radio_list = []
#         count=0
#         while count<=3:
#             try:
#                 documents=[item['content'] for item in documents_full]
#                 document_summaries = [f"[DOCUMENT {i+1}]: {summary}{count}" for i, summary in enumerate(documents)]
#                 documents_str='\n'.join(document_summaries)
#                 formatted_prompt = system_instructions(
#                     question_difficulty, topic,documents_str)
#                 print(formatted_prompt)
#                 pre_prompt = [
#                     {"role": "system", "content": formatted_prompt}
#                 ]
#                 response = client.text_generation(
#                     formatted_prompt, **generate_kwargs, stream=False, details=False, return_full_text=False,
#                 )
#                 output_json = json.loads(f"{response}")
                
        
#                 print(response)
#                 print('output json', output_json)
        
#                 global quiz_data
        
#                 quiz_data = output_json
        
                
        
#                 for question_num in range(1, 11):
#                     question_key = f"Q{question_num}"
#                     answer_key = f"A{question_num}"
        
#                     question = quiz_data.get(question_key)
#                     answer = quiz_data.get(quiz_data.get(answer_key))
        
#                     if not question or not answer:
#                         continue
        
#                     choice_keys = [f"{question_key}:C{i}" for i in range(1, 5)]
#                     choice_list = []
#                     for choice_key in choice_keys:
#                         choice = quiz_data.get(choice_key, "Choice not found")
#                         choice_list.append(f"{choice}")
        
#                     radio = gr.Radio(choices=choice_list, label=question,
#                                      visible=True, interactive=True)
        
#                     question_radio_list.append(radio)
#                 if len(question_radio_list)==10:
#                     break
#                 else:
#                     print('10 questions not generated . So trying again!')
#                     count+=1
#                     continue
#             except Exception as e:
#                 count+=1
#                 print(f"Exception occurred: {e}")
#                 if count==3:
#                     print('Retry exhausted')
#                     gr.Warning('Sorry. Pls try with another topic !')
#                 else:
#                     print(f"Trying again..{count} time...please wait")
#                     continue

#         print('Question radio list ' , question_radio_list)

#         return ['Quiz Generated!']+ question_radio_list

#     check_button = gr.Button("Check Score")

#     score_textbox = gr.Markdown()

#     @check_button.click(inputs=question_radios, outputs=score_textbox)
#     def compare_answers(*user_answers):
#         user_anwser_list = []
#         user_anwser_list = user_answers

#         answers_list = []

#         for question_num in range(1, 20):
#             answer_key = f"A{question_num}"
#             answer = quiz_data.get(quiz_data.get(answer_key))
#             if not answer:
#                 break
#             answers_list.append(answer)

#         score = 0

#         for item in user_anwser_list:
#             if item in answers_list:
#                 score += 1
#         if score>5:
#              message = f"### Good ! You got {score} over 10!"
#         elif score>7:
#              message = f"### Excellent ! You got {score} over 10!"
#         else:
#              message = f"### You got {score} over 10! Dont worry . You can prepare well and try better next time !"

#         return message



# demo = gr.TabbedInterface([CHATBOT,QUIZBOT], ["AI ChatBot", "AI Quizbot"])

# demo.queue()
# demo.launch(debug=True)