Spaces:
Runtime error
Runtime error
File size: 4,907 Bytes
77852b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import torch
import soundfile as sf
import gradio as gr
from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
from transformers import SpeechT5HifiGan
from datasets import load_dataset
from IPython.display import Audio
import numpy as np
model_name = "trangiabao17032000/final_tts"
#processor
processor = SpeechT5Processor.from_pretrained(model_name)
tokenizer = processor.tokenizer
#model
model = SpeechT5ForTextToSpeech.from_pretrained(model_name)
model.resize_token_embeddings(len(tokenizer))
model.eval()
#vocoder
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
vocoder.eval()
#speaker embedding
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
#cleaner text
def convert_string_to_numbers(input_str):
try:
# Replace comma with period and attempt to convert the string to a float
num = float(input_str.replace(',', '.'))
if num.is_integer():
return int(num)
return num
except ValueError:
# If it's not a valid float, check if it's an integer or a negative integer
if input_str.replace('.', '', 1).isdigit(): # Remove one dot for checking integers
return int(input_str.replace(',', ''))
elif input_str[0] == '-' and input_str[1:].replace('.', '', 1).isdigit():
return int(input_str.replace(',', ''))
else:
raise ValueError("Invalid input: couldn't convert to a number")
def number_to_vietnamese_words(number):
ones = ['', 'một', 'hai', 'ba', 'bốn', 'năm', 'sáu', 'bảy', 'tám', 'chín']
tens = ['', 'mười', 'hai mươi', 'ba mươi', 'bốn mươi', 'năm mươi', 'sáu mươi', 'bảy mươi', 'tám mươi', 'chín mươi']
hundreds = ['', 'một trăm', 'Hai trăm', 'ba trăm', 'bốn trăm', 'năm trăm', 'sáu trăm', 'bảy trăm', 'tám trăm', 'chín trăm']
thousands = [''] + ['nghìn', 'triệu', 'tỷ']
def words(n):
if n < 10:
return ones[n]
elif n < 20:
return tens[n//10] + " " + words(n % 10)
elif n < 100:
return tens[n // 10] + ('' if n % 10 == 0 else ' ' + ones[n % 10])
else:
return hundreds[n // 100] + ('' if n % 100 == 0 else (' lẻ ' if n % 100 < 10 else ' ') + words(n % 100))
if number == 0:
return 'không'
integer_part = int(number)
decimal_part = round((number - integer_part) * 100) # Round the decimal part to 2 decimal places
result = []
i = 0
while integer_part > 0:
if integer_part % 1000 != 0:
result.append(words(integer_part % 1000) + (' ' + thousands[i] if i > 0 else ''))
integer_part //= 1000
i += 1
result_integer = ' '.join(result[::-1])
result_decimal = ''
if decimal_part > 0:
result_decimal = ' phẩy'
for digit in str(decimal_part):
result_decimal += ' ' + ones[int(digit)]
return result_integer + result_decimal
def is_num(string):
try:
float(string)
except ValueError:
return False
return True
def normalize(input):
input = input.lower()
newstr = map(lambda x: number_to_vietnamese_words(convert_string_to_numbers(x)) if is_num(x) else x, input.split(" "))
return ' '.join(newstr)
def split_paragraph_into_sentences(paragraph, max_chars = 300):
sentences = []
words = paragraph.split()
current_sentence = words[0]
for word in words[1:]:
if len(current_sentence) + len(word) + 1 <= max_chars:
current_sentence += ' ' + word
else:
sentences.append(current_sentence)
current_sentence = word
if current_sentence:
sentences.append(current_sentence)
return sentences
# generator speech
def text_to_speech(paragraph):
try:
paragraph = normalize(paragraph)
except:
paragraph = paragraph.lower()
list_sentence = split_paragraph_into_sentences(paragraph)
final_speech = np.array([])
for sentence in list_sentence:
inputs = processor(text=sentence, return_tensors="pt")
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings,vocoder=vocoder)
final_speech = np.concatenate((final_speech, speech.numpy()))
sf.write("tts_example.wav", final_speech, samplerate=16000)
return "tts_example.wav"
tts_examples = [
"xin chào mọi người, đây là sản phẩm thử nghiệm cho tiếng việt.",
"Mình sẽ tổ chức sinh nhật vào thứ 6 ngày 7 tháng này",
]
#gradio interface
iface = gr.Interface(
fn=text_to_speech,
inputs=gr.Textbox(),
outputs=gr.Audio(),
title="Text-to-Speech",
examples=tts_examples,
description="Give me something to say!",
)
iface.launch() |