import gradio as gr from PIL import Image # Define the prediction function for Gradio def predict(image, question): inputs = processor(text=[question], images=[image], return_tensors="pt", padding=True).to(device) outputs = model.generate(**inputs) return processor.tokenizer.decode(outputs[0], skip_special_tokens=True) # Create the Gradio interface interface = gr.Interface( fn=predict, inputs=["image", "text"], outputs="text", title="Florence 2 VQA - Engineering Drawings", description="Upload an engineering drawing and ask a related question." ) # Launch the Gradio interface interface.launch()