import gradio as gr import torch from transformers import DalleBartTokenizer, DalleBartForConditionalGeneration from PIL import Image import io # Load model and tokenizer model_id = "dalle-mini/dalle-mini" # Example model id; adjust if needed model = DalleBartForConditionalGeneration.from_pretrained(model_id) tokenizer = DalleBartTokenizer.from_pretrained(model_id) # Function to generate image def generate_image(prompt, num_inference_steps=50): inputs = tokenizer(prompt, return_tensors="pt") # Generate images with torch.no_grad(): outputs = model.generate(**inputs, num_beams=num_inference_steps) # Convert tensor to PIL image image = Image.fromarray(outputs[0].cpu().numpy().astype('uint8')) return image # Define the Gradio interface with gr.Blocks() as demo: gr.Markdown("# Text to Image Generation") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here...") num_inference_steps = gr.Slider(minimum=1, maximum=50, step=1, value=28, label="Number of Inference Steps") with gr.Row(): generate_button = gr.Button("Generate Image") result = gr.Image(label="Generated Image") # Connect the function to the button generate_button.click( fn=generate_image, inputs=[prompt, num_inference_steps], outputs=result ) # Launch the Gradio app demo.launch()